Programming Languages
and Techniques
(C1S120)

Lecture 14
February 11, 2013

Imperative Queues



Announcements

* Homework 4 due tonight at midnight

* Midterm 1 will be in class on Friday, February 15t

— ROOMS:
 Towne 100 (here) last names: A —K
 Cohen G17 last names: L -7

— TIME: 11:00a.m. sharp, 50 mins

— Covers up to Feb 6t
 no Abstract Stack Machine

CIS120/ Spring 2013




Mutable Records and the ASM



Abstract Stack Machine

* Three “spaces”
— workspace

e contains the expression the computer is currently working with
* Machine operation simplifies expression to value
— stack

e temporary storage for 1et bindings, function parameters and stored
workspaces (function call)

* maps variable names to values (primitive values or references to heap
locations)

— heap

» storage area for large data structures (datatypes, tuples, first-class
functions, records)



Mutable Records

* We had to go through all this abstract stack stuff to make the
model of heap locations and sharing explicit.

— Now we can say what it means to mutate a heap value in place.

type point = {mutable x:int; mutable y:int}

let pl : point = {x=1; y=1;}
let p2 : point = pl
let ans : int = p2.x <- 17; pl.x

* We draw a record in the heap like this:

— The doubled outlines indicate that those

cells are mutable X L
— Everything else is immutable Y L
— (field names don’t actually take up space) A point record

in the heap.



Allocate a Record

Workspace Stack

let pl : poin
let p2 : poin
let ans : int =

p2.x <- 17; pl.x

{x=1; y=1;}
1

t:
t =p

CIS120/ Spring 2013

Heap




Allocate a Record

Workspace Stack

~

let pl : point =
t = pl

let p2 : poin
let ans : int =
p2.x <- 17; pl.x

CIS120/ Spring 2013

Heap




Let Expression

Workspace

Stack

let pl : point

/.

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120/ Spring 2013

Heap




Push p1l

Workspace Stack

Heap

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120/ Spring 2013




Lookup ‘pl’

Workspace Stack

pl

'd

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120/ Spring 2013

Heap




Lookup ‘pl’

Workspace Stack Heap
pl x
let p2 : point = y

let ans : int =
p2.x <- 17; pl.x

CIS120/ Spring 2013



Let Expression

Workspace Stack Heap
¢////——_-\\\\ P1] ¥ X
let p2 : point = . y

let ans : int =
p2.x <- 17; pl.x

CIS120/ Spring 2013



Workspace Stack Heap

let ans : int =
p2.x <- 17; pl.x

Note: pl and p2 are references to the same heap record.
They are aliases — two different names for the same thing.

CIS120/ Spring 2013




Lookup ‘p2’

Workspace

Stack

let ans : int =
p2.x <- 17; pl.x

pl

CIS120/ Spring 2013

Heap

A 4
pzf'/\/




Lookup ‘p2’

Workspace

Stack

let ans : int =
\.x <-17; pl.x

pl

p2

CIS120/ Spring 2013

Heap




Assign to x field

Workspace

Stack

let ans : int =

pl.x

pl

p2

CIS120/ Spring 2013

Heap




Assign to x field

Workspace Stack Heap

pl

‘X

let ans : int =
()7 pl.x

CIS120/ Spring 2013



Sequence ;" Discards Unit

Workspace Stack

pl

d

p2

let ans : int =

): pl.x

CIS120/ Spring 2013

Heap

X

17

SN

y




Lookup ‘pl’

Workspace Stack Heap

pl

A 1
pZ'/'/\/Y

let ans : int =
pl.x

CIS120/ Spring 2013



Lookup ‘pl’

Workspace Stack Heap

pl =

p2 y

let ans : int =

'\.x

CIS120/ Spring 2013



Project the ‘X’ field

Workspace Stack
pl
: p2
let ans : 1nt =

_JYLX

CIS120/ Spring 2013

Heap

17




Project the ‘X’ field

Workspace Stack

pl

'd

p2

let ans : int =
17

CIS120/ Spring 2013

Heap

17

o~




Let Expression

Workspace Stack Heap

pl

A N\
pZNY

let ans : int =
17

CIS120/ Spring 2013



Push ans

Workspace

Stack

ans| 17

CIS120/ Spring 2013

Heap

17

A\ s
pz-"f\/




Reference and Equality

— VS. p——




Reference Equality

Suppose we have two counters. How do we know whether
they share the same internal state?

— type counter = { mutable count : int }
— We could increment one and see whether the other’s value changes.
— But we could also just test whether the references alias directly.

Ocaml uses ‘== to mean reference equality:

— two reference values are ‘==’ if they point to the same data in the

heap:
r2 == r3 r]_ i count 0
not (rl == r2) 2

count 0

rl = r2 (3



Structural vs. Reference Equality

e Structural (in)equality: vl = v2 vl <> v2

recursively traverses over the structure of the data, comparing the two
values’ components for structural equality

function values are never structurally equivalent to anything
structural equality can go into an infinite loop (on cyclic structures)
use this for comparing immutable datatypes

 Reference equality: vl==v2 vl !l=v2

Only looks at where the two references point into the heap
function values are only equal to themselves

equates strictly fewer things than structural equality

use this for comparing mutable datatypes



Putting State to Work

Queues




A design problem

Suppose you are implementing a website to sell tickets to a
very popular music event. To be fair, you would like to allow

people to select seats first come, first served. How would you
do it?

Understand the problem

— Some people may visit the website to buy tickets while others are still
selecting their seats

— Need to remember the order in which people purchase tickets

Define the interface

— Need a datastructure to store ticket purchasers

— Need to add purchasers to the end of the line

— Need to allow purchasers at the beginning of the line to select seats
— Needs to be mutable so the state can be shared across web sessions



(Mutable) Queue Interface

module type QUEUE =

sig
(* type of the data structure *)
type 'a queue

(* Make a new, empty queue *)
val create : unit -> 'a queue

(* Determine if the queue is empty *)
val is empty : 'a queue -> bool

(* Add a value to the tail of the queue *)
val enq : 'a -> 'a queue -> unit

(* Remove the head value and return it (if any) *)

val deq : 'a queue -> 'a

end

CIS120/ Spring 2013




Define test cases

(* Some test cases for the queue *)

let test () : bool =
let g : int queue = create () in
enqg 1 qg;
enqg 2 q;
1 = deq g

;7 run test "queue test 1" test

let test () : bool =
let g : int queue = create () in
enqg 1 qg;
enqg 2 q;
let = deq g in
2 = deq g

;; run test "queue test 2" test

CIS120/ Spring 2013




Implement the behavior

module ListQ : QUEUE = struct

type 'a queue = { mutable contents : ‘a list }

let create () : 'a queue =
{ contents = [] }

let is _empty (g:'a queue) : bool =
g.contents = []

let eng (x:'a) (gq:'a queue) : unit =
g.contents <- (g.contents @ [x])

let deqg (g:'a queue) : 'a =

begin match g.contents with

end

end

| [1 -> failwith "deq called on empty queue"
| x::tl -> g.contents <- tl; x

Here we are using type abstraction to protect the state.
Outside of the module, no one knows that queues are

CIS120/ Spring 2013

implemented with a mutable structure. So, only these
functions can modify this structure.




A Better Implementation

Implementation is slow because of append:
— g.contents @ [x] copiesthe entire list each time
— As the queue gets longer, it takes longer to add data
— Only has a single reference to the beginning of the list

Let's do it again with TWO references, one to the beginning

(head) and one to the end (tail).
— Dequeue by updating the head reference (as before)
— Enqueue by updating the tail of the list

The list itself must be mutable

— because we add to one end and remove from the other

Step 1: Understand the problem



Data Structure for Mutable Queues

type 'a gnode = {

v: 'a;
mutable next : 'a gqnode option
}
type 'a queue = { mutable head : 'a gnode option;

mutable tail : 'a gnode option }

There are two parts to a mutable queue:
* the “internal nodes” of the queue with links from one
to the next
* the head and tail references themselves

All of the references are options so that the queue can be
empty.



Queues in the Heap

head

tail

=

None

None

An empty queue

head

tail

4

Some

Some

None

A gqueue with one element

head

Some

tail

3

Some

v 1
ﬁT Some /
next

A gqueue with two elements

CIS120/ Spring 2013

N

next

None




Visual Shorthand: Abbreviating Options

head
tail

An empty queue

head

ARG

/

Val

AN

means

means

/N

/

Some

1\

None

Val

tail

v

1

A\

next

<

A gqueue with one element

head

tail

=

v

next

o

next

1

A gqueue with two elements

CIS120/ Spring 2013




