Programming Languages
and Techniques
(C1S120)

Lecture 32
April 5, 2013

Equality and Hashing

When to override: Equality

Consider this example

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in madin

List<Point> 1 = new LinkedList<Point>();
1.add(new Point(1,2));
System.out.println(l.contains(new Point(1,2)));

 Whatis printed to the terminal? Why?

When to override equals

In classes that represent (immutable) values
— String already overrides equals
— Our Point class is a good candidate

When there is a “logical” notion of equality

— The collections library overrides equality for Sets
(e.g. two sets are equal if and only if they contain the same elements)

Whenever instances of a class can serve as elements of a set
or as keys in a map

— The collections library uses equals internally to define set membership
and key lookup

— (This is the problem with the example code.)

When not to override equals

* Each instance of a class is inherently unique

— Often the case for mutable objects (since its state might change, the
only sensible notion of equality is identity)

— Classes that represent “active” entities and not data (e.g. threads or
gui components, etc.)

* A superclass already overrides equals and provides the correct

functionality.
— Usually the case when a subclass adds only new methods, not fields

How to override equals

*See the very nicely written article “How to write an Equality Method in Java” by Oderski, Spoon, and
Venners (June 1, 2009) at http://www.artima.com/lejava/articles/equality.html

The contract for equals

* The equals method implements an equivalence relation on non-null
objects.
e ltis reflexive:

— for any non-null reference value x, x.equals(x) should return true

* |tis symmetric:

— for any non-null reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true

* |tis transitive:
— for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
* [tis consistent:

— for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information
used in equals comparisons on the object is modified

For any non-null reference x, x.equals(null) should return false.

Directly from: http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)

First attempt

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {this.x = x; this.y = y;}
public int getX() { return x; }
public int getY() { return y; }
public boolean equals(Point that) {
return (this.getX() == that.getX() &&
this.getY() == that.getY());

equals was overloaded not overridden

public class Point {

// overloaded, not overridden
public boolean equals(Point that) {
return (this.getX() == that.getX() &&
this.getY() == that.getY());

¥
¥
Point pl = new Point(1,2);
Point p2 = new Point(1,2);
Object o = p2;

System.out.println(pl.equals(o));
// prints false!
System.out.println(pl.equals(p2));
// prints true!

The type of equals as declared in Object is:
public boolean equals(Object o)
The implementation above takes a Point not an Object!

Overriding equals, take two

Properly overridden equals

public class Point {

éOverride

public boolean equals(Object o) {
// what do we do here???

}

 Usethe @Override annotation when you intend to override a method
so that the compiler can warn you about accidental overloading.

* Now what? How do we know whether the o is even a Point?
— We need a way to check the dynamic type of an object.

instanceof

* Java provides the instanceof operator that tests the dynamic type of
any object.
— Note: (null instanceof C) returns false forallC

Point p

Object
Object

System.
.out.println(Col instanceof Point);
System.
System.

System

// Some instanceof tests are nonsensical:
System.

= new Point(1,2);
ol = p;
o2 = "hello";
out.println(p instanceof Point);

out.println(o2 instanceof Point);
out.println(p instanceof Object);

out.println(p instanceof String);

// prints true
// prints true
// prints false
// prints true

// compile-time error

* In the case of equals, instanceof is appropriate because the method
behavior depends on the dynamic types of two objects: ol.equals(o2)

* But... use instanceof judiciously — usually, dynamic dispatch is preferred.

— In fact, one could argue that overriding equals (and related “multimethods”) is the only
time one should use instanceof

Type Casts

* We can test whether o is a Point using instanceof

@0verride Check whether o

public boolean equals(Object o) { is a Point.
boolean result = false;
1f (o instanceof Point) {
// 0 1s a point - how do we treat it as such?
3

return result;

¥

* Useatypecast: (Point) o
— At compile time: the expression (Point) o hastype Point.

— At runtime: check whether the dynamic type of o is a subtype of Point, if so
evaluate to o, otherwise raise a ClassCastException

— As with instanceof, use casts judiciously —i.e. almost never. Instead use
generics

Refining the equals implementation

@Qverride

public boolean equals(Object o) { This cast is
boolean result = false;

. . : guaranteed to
1f (o instanceof Point) ﬁ?,,,,,—,,,,,,_ ranteed

Point that = (Point) o;
result = (this.getX() == that.getX() &&
this.getY() == that.getY());

¥

return result;

Now the example code from the slide 2 will behave as expected.
But... are we done? Does this implementation satisfy the contract?

Equality and Subtypes

Suppose we extend Point like this

public class ColoredPoint extends Point {

private final int color;

public ColoredPoint(int x, int y, int color) {

}

super(x,y);
this.color = color;

@0verride
public boolean equals(Object o) {

boolean result = false;
1f (o instanceof ColoredPoint) {

ColoredPoint that = (ColoredPoint) o;
result = (this.color == that.color &&

super.equals(that));
¥

return result;

This version of
equals is suitably
modified to
check the color
field too.

Keyword super is
used to invoke
overridden methods.

Broken Symmetry

Point p = new Point(1,2);

ColoredPoint cp = new ColoredPoint(1,2,17);
System.out.println(p.equals(cp));

// prints true
System.out.println(cp.equals(p));

// prints false

* The problem arises because we mixed Points and ColoredPoints, and
ColoredPoints have more data that allows for finer distinctions.

* Should a Point ever be equal to a ColoredPoint?

Suppose Points can equal ColoredPoints

public class ColoredPoint extends Point {

public boolean equals(Object o) {

boolean result = false;

1f (o instanceof ColoredPoint) {
ColoredPoint that = (ColoredPoint) o;
result = (this.color == that.color &&

super.equals(that));

} else 1f (o instanceof Point) {
result = super.equals(o);

ks

return result;

We can repair the symmetry violation by checking for Point explicitly.

Does this work?

Broken Transitivity

Point p = new Point(1,2);
ColoredPoint cpl = new ColoredPoint(1,2,17);
ColoredPoint cp2 = new ColoredPoint(1,2,42);

System.
System.
System.
System.

out.println(p.equals(cpl)); // prints
out.println(cpl.equals(p)); // prints
out.println(p.equals(cp2)); // prints
out.println(cpl.equals(cp2)); // prints

true
true(!)
true
false(!!)

* We fixed symmetry, but broke transitivity!

* Should a Point ever be equal to a ColoredPoint?

No!

A Recipe for Equality™

*Even this isn’t the final story — there is another version that uses reflection to check for class names. It
doesn’t work well with anonymous classes or subclasses that add only methods, but is simpler in other
ways. See the Odersky article for a discussion of the tradeoffs.

Add a canEqual method.

public class Point {

@verride public boolean equals(Object o) { [.\ —
boolean result = false; sé the cantqua

1f (o instanceof Point) { ”;te}:re":is.];g;e
Point that = (Point : Ject.
result = (that.canEqual(this) &&

this.getX() == that.getX() &&
this.getY() == that.getY().

Expose an
“instanceof” test
specialized to
this particular
class.

}

return result;

3
public boolean canEqﬁEl(Object other) {

return (other instanceof Point);
¥

Override equals and canEqual

public class ColoredPoint extends Point {

@Override
public boolean equals(Object o) {
boolean result = false;
1f (o instanceof ColoredPoint) {
ColoredPoint that = (ColoredPoint) o;
result = (that.cankEqual(this) &&
this.color == that.color &&
super.equals(that));

¥

return result;
3
@0Override

public boolean canEqual(Object other) {
return (other instanceof ColoredPoint);
Iy

}

The equals Recipe

public class C extends D {

".@Override
public boolean equals(Object o) {
—1f (this 0) return true; <

—

1. Override equals at
the right type.

boolean result = false;
if (o instanceof C) {
C that = (O o;

result = (that.canEqual(this) &&

this.fieldl == that.fieldl

Ehis.fiele.equals(that.Fiele) &&
super.equals(that));

}

return result;

}

public boolean canEqual(Object ot
return (other instanceof ();

}
}

2. Return true in the
case of identity. (This
is an optimization.)

3. Use instanceof and
cast to check the
other object’s type.

™N

4. Implement the
canEqual method and
use the other object’s
version of it.

5. Compare all the
corresponding fields,
deferring to the
superclass if needed.

Field Comparison

When do you use == to compare fields?
— for fields that store primitive types (int, boolean, etc.)
— (often) when the field is a reference to a mutable object
— when you want “shallow” equality (you don’t want to follow pointers)

When do you use equals to compare fields?
— for references to immutable “value” types (like String or Point)
— when you want to do “deep” equality (e.g. for singly-linked lists)

— my model: use equals to compare objects whose representations in OCaml would
not use the “ref” keyword (e.g. trees, etc.)

Be careful about cycles!

— It’s easy to cause equals to go into an infinite loop for cyclic (often mutable) data
structures.

It’s usually appropriate to defer to the superclass to check its fields.

— But not in the first class to override equals! (Object uses pointer equality,
remember!)

Fields might be accessed directly or through accessor methods.

Some caveats

Whenever you override equals you must also override
canEqual (assuming you follow the recipe given here)

— or provide it if the class is the first one in the inheritance tree to
override equals

Whenever you override equals you must also override
hashCode in a compatible way
— hashCode is used by the HashSet and HashMap collections

