Programming Languages
and Techniques
(C1S120)

Lecture 2
January 17, 2013

Value-Oriented Programming

If you are joining us today...

* See Wed’s slides/screencast on course website

* Read the course syllabus/lecture notes on the
website

e Sign yourself up for Piazza
http://www.piazza.com/

 Install OCaml/Eclipse on your laptop; ask if you have
gquestions
http://www.seas.upenn.edu/~cis120/current/
ocam| setup.shtml

* No laptops, tablets, smart phones, etc., during
lecture

CIS120

Registration

* If you are not registered, add your name to the
waiting list
— There are spots available, but we want to make sure that
those who need to take the course this semester can
register first
* Need a different recitation?
— If the want you want is open, switch online
— Recitations 204, 208 and 209 have the most space

— If you need to attend a closed recitation, add your name to
the recitation change request form

— Go to the recitation you want, even if not registered

Announcements

* Please read:
— Chapter 2 of the course notes

— OCaml style guide on the course website
(http://www.seas.upenn.edu/~cis120/current/
programming_style.shtml)

e Homework 1: OCaml Finger Exercises
— Practice using OCaml to write simple programs
— Start with first 4 problems (lists next week!)
— Due: Tuesday, January 28t at 11:59:59pm (midnight)
— Start early!
* Guest lecturer (Peter-Michael Osera) next week
— Prof. Weirich OH Monday, then away Tuesday-Saturday

Homework Policies

Projects will be (mostly) automatically graded
— WEe’'ll give you some tests, as part of the assignment
— You'll write your own tests to supplement these
— Our grading script will apply additional tests
— Your score is based on how many of these you pass
— Some assignments will also include style points, added later
— Your code must compile to get any credit

You will be given your score (on the automatically graded portion of
the assignment) immediately

Multiple submissions are allowed

— First few submissions: no penalty

— Each submission after the first few will be penalized
— Your final grade is determined by the best raw score

Late submissions
— 10 point penalty if less than 24 hours late
— 20 point penalty if 24-48 hours late
— Submissions not accepted after 48 hours past the deadline

Recitations / Lab Sections

* First recitations start Wednesday and Thursday
— Bring your laptops

— Install tools (OCaml, eclipse) on your laptop before
recitation next week

— http://www.seas.upenn.edu/~cis120/current/
ocaml| setup.shtml

* Goals of first meeting:
— Meet your TAs and classmates
— Debug tool (OCaml, eclipse) installation problems
— Practice with OCaml before your first homework is due

— If you are eager to get started, first lab material already
available

CIS120

Important Dates

* Homework:

— Homework due dates listed on course calendar
— Mostly Tuesdays, some Fridays

* Exams:
— 12% First midterm: Friday, February 21%, in class
— 12% Second midterm: Friday, April 4™, in class
— 18% Final exam: Wednesday, May 7t", 9-11 AM
— Contact me well in advance if you have a conflict

Where to ask questions

* Course material
— Piazza Discussion Boards
— TA office hours, on webpage calendar
— Tutoring, Sunday and Monday evenings

— Prof office hours: Mondays from 1 to 3 PM, or by
appointment (changes will be announced on Piazza)

« HW/Exam Grading: see webpage
* About the CIS majors

— Ms. Jackie Caliman, CIS Undergraduate coordinator

Clicker Basics

* Beginning today, we’ll use clickers in each lecture

— Grade recording starts 1/28

* Any kind of TurningPoint ResponseCard is fine

— Doesn’t have to be the exact model sold in the bookstore

* Use the link on the course website to register your

device ID with the course data

DadSe

CIS120

' FCC ID : RAWRCRFO1
| ACN'W‘I“‘“? ((o

R

Responsive Innovations, LLC
PN:RCRF-01

Distributed by : Turwing Technologres, LLC
www.TurningTechnologies.com

- 8994A-RESCARD m e

6
u nm Asumblcd n S&,

" 6-character device ID

Test Drive

. ResponseCar(
* (Clickers out!

* Press any of the number buttons / - (
— Make sure the display looks like this:

* Ifitlooks like this...
— ... first check that the channel is set to 41

e If not, try pressing Channel, then 41, then @
Channel again to reset the channel

— |If this doesn’t work come to office hours

~ ResponseCard R

CIS120

Have you successfully installed OCaml on your laptop?

1) Yes
2) No

CIS120

CIS120

In what language do you have the most significant
programming experience?

Java C#

C, C#, C++ or Objective-C
Python, Ruby, or MATLAB
Clojure, Scheme, or LISP
OCaML, Haskell, or Scala
Other

O Ul > WIDN -
N N N N '

Programming in OCaml|

Read Chapter 2 of the CIS 120 lecture notes,
available from the course web page

Course goal

Strive for beautiful code.

* Beautiful code
— is simple
— is easy to understand
— is likely to be correct
— IS easy to maintain

— takes skill to develop

CIS120

Value-Oriented Programming

* Java, C, C#, C++, Python, Perl, etc. are tuned for an
imperative programming style
— Programs are full of commands
* “Change xto 5!”
* “Increment z!”
* “Make this point to that!”
* Ocaml, on the other hand, promotes a value-
oriented style

— We've seen that there are a few commands...

* e.g., print _endline, run test
... but these are used rarely
— Most of what we write is expressions denoting values

Metaphorically, we might say that
imperative programming is about doing
while

value-oriented programming is about being

Being vs Doing

CIS120

Simplification vs. Execution

* We can think of an OCaml expression as just a way of
writing down a value

* We can visualize running an OCaml program as a
sequence of calculation or simplification steps that
eventually lead to this value

* By contrast, a running Java program performs a
sequence of actions or events

... a variable named x gets created

... then we put the value 3 in x

... then we test whether y is greater than z

... the answer is true, so we put the value 4 in x
... etc.

What is an OCaml| module?

open Assert <

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool = e////////////

attendees 500 = 120
;5 run_test "attendees at 5.00" test

module import

y 7 function declarations

let X = attendees 500 «- N\\\ let declarations

;5 print_int x -~

; commands

;; print_endline "end of demo" < |

CIS120

(Top-level) Let Declarations

A let declaration gives a name (a.k.a. an identifier) to
the value of some expression™

let pi = 3.14159
let seconds_per_day = 60 * 60 * 24

There is no way of assigning a new value to an
identifier after it is declared.

*We sometimes call these identifiers variables, but the terminology is a bit confusing because in languages like Java and C a
variable is something that can be modified over the course of a program. In OCaml, like in mathematics, once a variable’s
value is determined, it can never be modified... As a reminder of this difference, for the purposes of OCaml we’ll try to use
the word “identifier” when talking about the name bound by a let.

Programming with Values

* Programming without mutable variables requires a shift
of perspective that can be challenging at first!

- N s ¥ g s
. 4 . . ~ b ~~ .
[] . et 3 Cha) -~ ., . T~ ~ Pat O

But, in the end, it leads to code that is simpler to
understand

CIS120

(Top-level) Function Declarations

function name parameter names parameter types

N R P
let total_secs \\dyrs:int)//
(minutes:int

(seconds:1int
. 1nt =
(hours * 60 + mthgés) * 60 + seconds

bl

/ result type

function body (an expression)

CIS120

Commands

;5 run_test "Attendees at $5.00" test

;5 print_endline "Attendees at $5.00"
;5 print_int (attendees 500)

* Top-level commands run tests and print to the
console

* Such commands are the only places that semicolons
should appear in your programs (so far)

What does an OCaml program do?

open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool = 4————”””’——
attendees 500 = 120
;5 run_test "attendees at 5.00" test

let x = attendees 500

;5 print_int x é”””””””””’—

. To know if the test will pass,
we need to know whether this
expression is true or false

_To know what will be printed
we need to know the
value of this expression

To know what an OCaml program
asno What the value of each expression

will do, you need to know
IS.

Calculating Expression Values

Calculating with Expressions

OCaml programs mostly consist of expressions.

We understand programs by simplifying expressions to
values:

3 — 3 (values compute to themselves)

3+4 =7
2 * (4 +5) = 18
attendees 500 = 120

The notation <exp> = <val> means that the expression
<exp> computes to the value <val>.

Note that the symbol ‘=" is not OCaml syntax. It’s a convenient
way to talk about the way OCaml programs behave.

CIS120

Step-wise Calculation

 We can understand = in terms of single step
calculations written ‘+—’

* For example:

(2+3) * (5-2)

— 5 * (5-2) because 2+3 — 5
— 5 * 3 because 5-2 — 3
— 15 because 5*3 — 15

e Every form of expression can be simplified with —

CIS120

Conditional Expressions

if s = "positive" then 1 else -1

if day >= 6 && day <= 7
then "weekend" else "weekday"

OCaml conditionals are expressions: they can be used
inside of other expressions:

(if 3 > @ then 2 else -1) * 100

if x > y then "x is bigger"
else if x <y then "y is bigger"
else "same"

CIS120

Simplifying Conditional Expressions

* A conditional expression yields the value of either its ‘then’-
expression or its ‘else’-expression, depending on whether the
test is ‘true’ or ‘false’.

* For example:

(1f 3 > 0 then 2 else -1) * 100
— (1f true then 2 else -1) * 100
— 2 * 100
— 200

|t doesn’t make sense to leave out the ‘else’ branch in an ‘if’.
(What would be the result if the test was ‘false’?)

CIS120

Function Calls

Once a function has been declared, it can be invoked by
writing the function name followed by a list of
arguments. This is function application.

total_secs 5 30 27

(Note that the list of arguments is not parenthesized.)

Calculating With Functions

* To calculate the value of a function application, first calculate
values for its arguments and then substitute them for the
parameters in the body of the functions.

total_secs (2 + 3) 12 17
— total_secs 5 12 17
—> (5 * 60 + 12) * 60 + 17 subst. the args
— (300 + 12) * 60 + 17
— 312 * 60 + 17

— 18720 + 17 let total_secs (hours:int)
(minutes:int)
— 18737 (seconds:int)
© 1nt =
(Chours * 60 + minutes) * 60 + seconds
CIS120

Local Let Declarations

Let declarations can appear both at top-level and

nested within other expressions. scope of x is
the body of f

let £ (x:int) : 1int =

let vy = x * 10 in scope of y is
nested within
Yy * Y the body of f
let test () : bool = _
scope of fis
(f 3) = 900 the rest of the
;7 run test “test f” test program

Nested let declarations are followed by “in”

Top-level let declarations are not

* Every local ‘let...in..." is an expression

* So these are legal OCaml expressions:

(let x =1 in X + x) * 2

1f 1 > 0 then (let Xx =1 in X + X) else 3

let x = (let y =11iny + 0) in Xx+X

1f (let x = 0@ in x < 1) then "foo" else "bar"

CIS120

Multiple declarations of the same variable or

Scope

function name are allowed. The later declaration
shadows the earlier one for the rest of the program.

let
let
let
let
X +

KN XK X

1 in

X + 1 in
1000 in
X + 2 in
Z

scope of x

scope of y

scope of x
(shadows
earlier x)

scope of z

Summary

e To read:

— Chapter 2 of lecture notes

— OCaml style guide
(http://www.seas.upenn.edu/~cis120/current/
programming_style.shtml)

e To do:

— Look at lab material in preparation for recitation
— Start first four problems of HW 1

