Programming Languages
and Techniques
(C1S120)

Lecture 10
Feb 10, 2014

First-class functions

Announcements

e HW #3 due Tuesday at midnight
e Read Ch 10 of the lecture notes

e Midterm 1
— Scheduled in class on Friday, February 21°

— Review session Wednesday, February 19t,
7-9PM in Wu & Chen

— More details to follow!

Abstracting with
first-class functions

Motivating design problem

Suppose you are given an association list from students to
majors, but you wanted a list that includes only students in
the engineering school? Or only students in wharton?

type student
type major
type school
type roster

string

string

SEAS | WHARTON | SAS | NURSING
(student * major) list

let to_school (m : major) : school = ..

SEAS
WHARTON

to_school m
to_school m

let is_engr (m : major) : bool
let is_wharton (m : major) : bool

let only_engr (m : roster) : roster = 77?7
let only_wharton (m : roster) : roster = 7?77

Demo: majors.ml

First Class Functions

Functions are values

First-class Functions

* You can pass a function as an argument to another function:

let twice (f:int -> int) (x:int) : int =
f (£ x)
let add one (z:int) : int = z + 1

let z = twice add one 3

 You can return a function as the result of another function.

let make incr (n:int) : int -> int =
let helper (x:int) : int =
n + x

in
helper

First-class Functions

You can store functions in data structures

let add one (x:int) : int = x+1
let add two (x:int) : int = x+2
let add three (x:1int) : int x+3

let func list : (int -> int) list =
[add one; add two; add three]

let func 1listl : (int -> int) list =
[make incr 1; make incr 2; make incr 3]

Simplifying First-Class Functions

let twice (f:int -> int) (x:int) : int =
f (£ x)
let add one (z:int) : int = z + 1

twice add one 3

add one (add one 3) substitute add_one for f, 3 for x
add one (3 + 1) substitute 3 for z in add_one
add one 4 3+1=4

4 + 1 substitute 4 for z in add_one

DT

5 4+1=5

Evaluating First-Class Functions

let make incr (n:int) : int -> int =
let helper (x:int) : int = n + x in
helper

make incr 3
substitute 3 for n
— let helper (x:int) = 3 + x in helper

— 22?7

Evaluating First-Class Functions

let make incr (n:int) : int -> int =
let helper (x:int) : int = n + x in
helper

make incr 3

substitute 3 for n
— let helper (x:int) = 3 + x in helper
— fun (x:int) -> 3 + x Anonymous function value

= \
keyword “fun”

“->” after arguments
no return type annotation

Function values

A standard function definition:

let is engr (m : major) : bool = to school m = SEAS

really has two parts:

let is _engr = fun (m:major) -> to _school m = SEAS

N L]
NI Y ’
define a variable with create a function value
that value

Both definitions have the same type and behave exactly the same:

val is _engr : major -> bool

Anonymous functions

let is engr (m : major) : bool = to school m = SEAS
let is sas (m : major) : bool to school m = SAS

let rec only (f : major -> bool) (r: roster) =

let only engr (r : roster) : roster =
only is engr r
let only sas (r : roster) : roster =

only is sas r

let only engr (r : roster) : roster =
only
(fun (m:major) -> to school m = SEAS) r
let only sas (r : roster) : roster =
only

(fun (m:major) -> to school m SAS) r

Multiple Arguments

We can decompose a standard function definition:

let sum (x : int) (y:int) : int : x + y

into two parts:

let sum = fun (x:int) -> fun (y:int) -> x + y

N\

\ /
\ Y g
define a variable with
that value

create a function value

Both definitions have the same interface and behave exactly the same:

val sum : int -> int -> int

Partial Application

let sum (x:int) (y:int) : int = x + vy

sum 3
— (fun (x:int) -> fun (y:int) -> x + y) 3 definition

— fun (y:int) -> 3 + vy substitute 3 for x

What is the value of this expresssion?

let f (x:bool) (y:int) : int =
1f x then 1 else y in

f true

1.1

2. true

3. fun (y:int) -> if true then 1 else y
4. fun (x:bool) -> if x then 1 else y

What is the value of this expresssion?

let f (g : int -> int) (y: int) :int =
gl +y1in

f (fun (x:int) -> x + 1) 3

1.1
2.2
3.3
4.4
5.5

What is the type of this expresssion?

uu H» W N B

let f (g : int -> int) (y: int)
gl+y1in

f (fun (x:int) -> x + 1)

: int =

.int

.int -> int

.int -> int -> int

.(int -> int) -> int -> int
.111-typed

What is the type of this expresssion?

v H W N B

[(fun (x:int) > x + 1);
(fun (x:int) -> x - 1)]

.int

.int -> int

. (int -> int) list
.int list -> int list
.111 typed

List transformations

A fundamental design pattern
using first-class functions

Refactoring code: Keys and Values

let rec keys (m:('k*'v) list) : 'k list =
begin match m with
| 11 => [
| (k,v)::rest -> k::(keys rest)
end

let rec values (m:('k*'v) list) : 'v list =
begin match m with
| 11 -> 1]
| (k,v)::rest -> v::(values rest)
end

Can we use first-class functions
to refactor code to share common
structure?

Keys and Values

let rec helper (f:(‘'k*’'v) -> ‘b) (m: ('k*'v) list)
‘b list =
begin match m with
| 11 -> []
| h::t -> £ h :: helper f t
end

let keys (m:('k,’v) map) : ‘k list = helper fst m
let values (m:(‘k,’v) map) : ‘v list = helpejfsnd m

/
/

The argument £ controls fst and snd are functions that
what happens with the binding at access the parts of a tuple:
the head of the list let fst (x,y) = X

let snd (x,y) =y

Going even more generic

let rec helper (f:(‘'k*’'v) -> ‘b) (m: ('k*'v) list)
‘b list =
begin match m with
| 11 -> []
| h::t -> £ h :: helper f t
end

let keys (m:('k,’v) map) : ‘k list = helper fst m
let values (m:('k,’v) map) : ‘v list = helper snd m

Now let's make it work for all lists,
not just lists of tuples...

Going even more generic

let rec helper (f:’a -> ‘b) (m:’a list)
‘b list =
begin match m with
| 11 -> []
| h::t -> (£ h) :: helper f t
end

let keys (m:('k,’v) list) : ‘k list = helper fst m

let values (m:(‘k,’'v) list) : ‘v lisj/;jkelpf;fsnd m

£

‘a stands for (‘k*’v)
‘b stands for ‘k

fst: (‘k*'v) -> ‘k

Transforming Lists

let rec transform (f:’a -> ‘b) (l:’'a list) : ‘b list =
begin match 1 with

[1 => 1]
| h::t -> (£ h)::(transform f t)
end

List transformation (a.k.a. “mapping a function across a list”*)

* foundational function for programming with lists
* occurs over and over again
 part of OCaml standard library (called List.map)

Example of using transform:
transform is engr [“FNCE”;”CIS”;"”ENGL”;"”"DMD"”] =
[false;true; false;true]

*confusingly, many languages (including OCaml) use the terminology “map” for the function that transforms
a list by applying a function to each element. Don’t confuse List.map with “finite map”.

let rec transform (f:’a -> ‘b) (l:'a list) : ‘b list =
begin match 1 with

| 11 —>]
| h::t -> (f h)::(transform f t)

end

What is the value of this expresssion?

transform String.uppercase [“a”;“b”;*“c”]

[]
. [Ila”; llb”; HC”]

] [HA”; IIB”’_ IIC”]

PwoN e

runtime error

What is the value of this expresssion?

transform (fun (x:int) -> x > 0)
[0 ; -1; 1; -2]

0;-1; 1; -2]
1]
0; 1]

false; false; true; false]

L

runtime error

List processing

The fold design pattern

Refactoring code, again

Is there a pattern in the definition of these two functions?

let rec exists (1 : bool list) : bool =

begin match 1 with

| [1 -> false
| h :: t -=> h || exists t

-~ —_—

let rec acid length (1 : id 1¥st) : int =

base case:
Simple answer when

end
\ the list is empty

begin match 1

| [1 >0

| x :: £t => 1 + acid length t <«
end

combine step:

Do something with
the head of the list
and the recursive call

Can we factor out that pattern using first-class functions?

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : 'a list) : 'b =
begin match 1 with
| [1] -> base
| x :: t -> combine x (fold combine base t)
end

let acid length (1 : acid 1list) : int =
fold (fun (x:acid) (y:int) -> 1 +y) 01
let exists (1 : bool list) : bool =
fold (fun (x:bool) (y:bool) -> x || y) false 1

* Fold (aka Reduce)

— Another foundational function for programming with lists
— Captures the pattern of recursion over lists

— Also part of OCaml standard library (List.fold_right)

— Similar operations for other recursive datatypes (fold_tree)

Functions as Data

We’ve seen a number of ways in which functions can be
treated as data in OCaml

Present-day programming practice offers many more
examples at the “small scale”:

— objects bundle “functions” (a.k.a. methods) with data

— iterators (“cursors” for walking over data structures)

— event listeners (in GUIs)

— etc.

The idiom is useful at the “large scale”: Google’s MapReduce
— Framework for mapping across sets of key-value pairs
— Then “reducing” the results per key of the map
— Easily distributed to 10,000 machines to execute in parallel!

