Programming Languages
and Techniques
(C1S120)

Lecture 11
Feb 12, 2014

Options and Unit

Announcements

« Homework 4 available on the web today
— due Tuesday, Feb 17t
— n-body physics simulation
— start early; see Piazza for discussions

 Read Chapters 11, 12 & 13 (they’re short)

* Midterm 1
— Scheduled in class on Friday, Feb 215t

— Review session Wednesday, Feb 19t , 7-9PM in Levine 101

List processing

The fold design pattern

Functions as Data

We’ve seen a number of ways in which functions can be
treated as data in OCaml

Present-day programming practice offers many more
examples at the “small scale”:

— objects bundle “functions” (a.k.a. methods) with data

— iterators (“cursors” for walking over data structures)

— event listeners (in GUIs)

— etc.

The idiom is useful at the “large scale”: Google’s MapReduce
— Framework for mapping across sets of key-value pairs
— Then “reducing” the results per key of the map
— Easily distributed to 10,000 machines to execute in parallel!

Refactoring code, again

* |sthere a pattern in the definition of these two functions?

let rec exists (1 : bool list) : bool =

begin match 1 with

| [1 -> false
| h :: t -=> h || exists t

-~ —_—

let rec acid length (1 : id 1¥st) : int =
begin match 1 w4

end

base case:
Simple answer when

end
\ the list is empty

| 11 >0
| x :: £t => 1 + acid length t «—

* Can we factor out that pattern using first-class functions?

CIS120

combine step:

Do something with
the head of the list
and the recursive call

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : 'a list) : 'b =
begin match 1 with
| [1] -> base
| x :: t -> combine x (fold combine base t)
end

let acid length (1 : acid 1list) : int =
fold (fun (x:acid) (acc:int) -> 1 + acc) 0 1
let exists (1 : bool list) : bool =
fold (fun (x:bool) (acc:bool) -> x || acc) false 1

* Fold (aka Reduce)

— Another foundational function for programming with lists
— Captures the pattern of recursion over lists
— Also part of OCaml standard library (List.fold_right)

— Similar operations for other recursive datatypes (fold_tree)
CIS120

CIS120

How would you rewrite this function

let rec sum (x : int list) : int =
begin match x with
| [] -> 0
| h :: t ->h + sum t
end

using fold? What should be the arguments for base and
combine?

1. combine is: (fun (h:int) (acc:int) -> acc + 1)
base is: 0

2. combine is: (fun (h:int) (acc:int) -> h + acc)
base is: 0

3. combine is: (fun (h:int) (acc:int) -> h + acc)
base is: 1

4. sum can’t be written by with fold.

1.

combine is:
base is:

combine is:
base is:

combine is:
base is:

How would you rewrite this function

let rec reverse (x : int 1list) : int list =
begin match x with
I [-> []
| h :: t -> reverse t @ [h]
end

using fold? What should be the arguments for base and combine?

(fun (h:int) (acc:int list) -> h :: acc)
0

(fun (h:int) (acc:int list) -> acc @ [h])
0

(fun (h:int) (acc:int list) -> acc @ [h])

[]

reverse can’t be written by with fold.

CIS120

Which of these is function that calculates the
maximum value in a list:

4

let rec list_max (x:'a list) : ’a
begin match x with
I [1 -> []
| h :: t -> max h (list_max t)
end

let rec list_max (x:'a list) : ’a
fold max 0 x

let rec list_max (x:’a list) : ‘a
begin match x with
| h :: t -> max h (list_max t)
end

. None of the above

Quiz answer

e |ist_ maxisn’t defined for the empty list!

let rec list max (l:'a list) : 'a =
begin match 1 with
| [1 -> failwith “empty list”

| [h] -=> h
| h::t -> max h (list max t)
end
let 1ist max (l:'a list) : 'a =

begin match 1 with
| [1 -> failwith “empty list”
| h::t -> fold max h t

end

CIS120

Client of list_max

(* string_of_max calls list_max *)
let string_of_max (x:int list) : string =
string_of_int (list_max x)

* Qops! string_of max will fail if given []

 Not so easy to debug if string_of _max is written by one
person and list_max is written by another

* Interface of list_max is not very informative
val list_max : int list -> 1int

CIS120

Dealing with Partiality

Option Types

Partial Functions

Sometimes functions aren’t defined for all inputs:

— tree_max from the BST implementation isn’t defined for empty trees
— integer division by O
— Map.find k m when the key k isn’t in the finite map m

We have seen how to deal with partiality using failwith, but
failwith aborts the program

Can we do better?

Hint: we already have all the technology we need.

Option Types
 Define a generic datatype of optional values:

type ‘a option =
| None
| Some of ‘a

III

* A “partial” function returns an option

let list max (l:list) : int option = ..

e Contrast this with null value, a “legal” return value of any type

— caller can accidentally forget to check whether null was used; results in
NullPointerExceptions or crashes

— Sir Tony Hoare, Turing Award winner and inventor of “nul
“billion dollar mistake”

|H

calls it his

Example: list_max

e A function that returns the maximum value of a list as an
option (None if the list is empty)

let list max (l:'a list) : 'a option =
begin match 1 with
| [1 -> None
| x::tl -> Some (fold max x tl)
end

CIS120

Revised client of list max

(* string of max calls list max ¥*)
let string of max (l:int list) : string =
begin match (list max 1) with
| None -> “no maximum”
| Some m -> string of int m
end

e string_of max will never fail

* The type of list_max makes it explicit that a client must check
for partiality.

val list max : int list -> int option

CIS120

What is the type of this function?

let head (x: ______) =
begin match x with

| [] -> None

| h :: t -> Some h

end

1. ‘alist->"a

2. ‘alist->‘alist

3. ‘alist -> ‘b option
4. ‘alist -> ‘a option

5. None of the above

What is the value of this expression?

let head (x: ‘a list) : ‘a option =
begin match x with
| [] -> None
| h :: t -> Some h
end in

head [[1]]

1

Some 1

[1]
Some [1]

gm0 =

None of the above

What is the value of this expression?

let head (x: ‘a list) : ‘a option =
begin match x with

| [] -> None
| h :: t -> Some h
end 1in

[head [1]; head []]

(1,0]
1
[Some 1; None]

[None; None]

gm0 =

None of the above

unit: the trivial type

e Similar to "void" in Java or C

* For functions that don't take any arguments

let £ () ¢ int = 3 val £ : unit -> int
let vy : int = £ () val y : int

e Also for functions that don't return anything, such as testing
and printing functions a.k.a commands:

(* run test : string -> (unit -> bool) -> unit *)
;7 run test “TestName” test

(* print string : string -> unit ¥*)
;7 print string “Hello, world!”

CIS120

unit: the boring type

* Actually, () isavalue just like any other value.

* For functions that don't take any interesting arguments

let £ () ¢ int = 3 val £ : unit -> int
let vy : int = £ () val y : int

* Also for functions that don't return anything interesting, such
as testing and printing functions a.k.a commands:

(* run test : string -> (unit -> bool) -> unit *)
;7 run test “TestName” test

(* print string : string -> unit ¥*)
;7 print string “Hello, world!”

CIS120

unit: the first-class type

e Can define values of type unit

let x = ()

val X : unit

e (Can pattern match unit (even in function definitions)

| O > 4

end

let z = begin match x with

fun () -> 3

* Isthe implicit else branch:

2 1f z <> 4 then
failwith "oops”

CIS120

s 1f z <> 4 then
failwith "oops”
else ()

Sequencing Commands and Expressions

e Expressions of type unit are useful because of their side effects (e.g.
printing)

 We can sequence those effects using *;’
— unlike in C, Java, etc., ;' doesn’t terminate a statement it separates a
command from an expression

let f (x:int) : int =
print_string “f called with ”;
print_string (string_of_int x);
X + X

~

()
do not use “’ here! note the use of ;" here

 We can think of ;" as an infix function of type:
unit -> ‘a -> ‘a

What is the type of £ in the following program:
let £ (x:int) = print int x

1. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. £ isill typed

CIS120

What is the type of £ in the following program:

let £ (x:int) =
print int (x + X)

1. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. £ isill typed

CIS120

What is the type of £ in the following program:

let £ (x:int) =
(print int x);
X + X

l. unit -> int
2. unit -> unit
3. int -> unit
4. int -> int
5. £ isill typed

CIS120

Imperative Programming

Course Overview

e Declarative programming

— persistent data structures

We are here.
— recursion is main control structure Midterm 1 covers
— heavy use of functions as data G material up to this point.

* |mperative programming
— mutable data structures (that can be modified “in place”)
— jteration is main control structure

* Object-oriented programming
— pervasive “abstraction by default”

— mutable data structures / iteration
— heavy use of functions (objects) as data

