Programming Languages and Techniques (CIS120)

Lecture 17

Feb 28th, 2014

"Objects" and GUI Design

Where we're going...

- HW 6: Build a GUI library and client application from scratch in OCaml
 - Available soon
 - Due Friday, March 7th
- Read Ch. 18 in lecture notes
- Goals:
 - Apply everything we've seen so far to do some pretty serious programming
 - Illustrate the event-driven programming model
 - Practice with first-class functions and hidden state
 - Give you a feel for how GUI libraries (like Java's Swing) work
 - Bridge to object-oriented programming
- Then: transition to Java

"Objects" and Hidden State

Objects in Java

```
public class Counter {
  private int count;
                        instance variable
  public Counter () {
    count = 0;
  public int incr () {
    count = count + 1;
    return count;
  public int decr () {
    count = count - 1;
    return count;
```

class declaration

methods

constructor

class name

object creation and use

```
public class Main {
 public static void
                               constructor
    main (String[] args) {
                                invocation
      Counter c = new Counter();
      System.out.println( c.inc() );
   }
                            method call
}
```

What is an Object?

- Object = Instance variables (fields) + Methods
 - Field = Mutable record
 - Methods = (Immutable) record of first-class functions that update the fields
- Objects encapsulate state when the methods are the only way to mutate the fields.
- Objects are first-class.
- Can we get similar behavior in OCaml?

An "incr" function

 This function increments a counter and return its new value each time it is called:

```
type counter_state = { mutable count:int }

let ctr = { count = 0 }

(* each call to incr will produce the next integer *)
let incr () : int =
   ctr.count <- ctr.count + 1;
   ctr.count</pre>
```

- Drawbacks:
 - No abstraction: There is only one counter in the world. If we want another,
 we need another counter state value and another *incr* function.
 - No encapsulation: Any other code can modify count, too.

Using Hidden State

 Make a function that creates a counter state and an incr function each time a counter is needed.

```
(* More useful: a counter generator: *)
let mk incr () : unit -> int =
  (* this ctr is private to the returned function *)
  let ctr = {count = 0} in
  fun () ->
   ctr.count <- ctr.count + 1;
   ctr.count
(* make one incr function *)
let incr1 : unit -> int = mk_incr ()
(* make another incr function *)
let incr2 : unit -> int = mk incr ()
```

What is the result of this computation?

```
let mk_incr () : unit -> int =
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count

let incr1 : unit -> int = mk_incr ()
  let incr2 : unit -> int = mk_incr ()
  let _ = incr1 ()
  let _ = incr1 ()
  incr1 ()
```

- 1. 1
- 2. 2
- 3. 3
- 4. runtime error

What is the result of this computation?

```
let mk_incr () : unit -> int =
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count

let incr1 : unit -> int = mk_incr ()
  let incr2 : unit -> int = mk_incr ()
  let _ = incr1 ()
  let _ = incr2 ()
  incr1 ()
```

- 1. 1
- 2. 2
- 3. 3
- 4. runtime error

Workspace

```
let mk_incr () : unit -> int =
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
  ctr.count

let incr1 : unit -> int =
  mk_incr ()
```

Stack Heap

Workspace

```
let mk_incr : unit -> unit ->
int = fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count</pre>
```

Stack Heap

Workspace

```
let mk_incr : unit -> unit ->
int = fun () ->
    let ctr = {count = 0} in
    fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count</pre>
let incr1 : unit -> int =
mk_incr ()
```

Stack Heap

Workspace

```
let mk_incr : unit -> unit ->
int =

let incr1 : unit -> int =
mk_incr ()
```

Stack

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count</pre>
```

Workspace

```
let mk_incr : unit -> unit ->
int =

let incr1 : unit -> int =
mk_incr ()
```

Stack

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count</pre>
```

Workspace

```
let incr1 : unit -> int =
mk_incr ()
```

Stack

mk_incr

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
  ctr.count</pre>
```

Workspace

```
let incr1 : unit -> int =
mk_incr ()
```

Stack

mk_incr

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
  ctr.count</pre>
```

Workspace

```
let incr1 : unit -> int =
( ())
```

Stack

mk_incr

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count</pre>
```

Workspace

```
let incr1 : unit -> int =
(__())
```

Stack

mk_incr

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
  ctr.count</pre>
```

Workspace

```
let ctr = {count = 0} in
fun () ->
  ctr.count <- ctr.count + 1;
  ctr.count</pre>
```

Stack mk_incr fur

```
let incr1 : unit -> int = (____)
```

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
  ctr.count</pre>
```

Workspace

```
let ctr = {count = 0} in
fun () ->
  ctr.count <- ctr.count + 1;
  ctr.count</pre>
```

Stack

mk_incr

```
let incr1 : unit -> int =
(___)
```

```
fun () ->
  let ctr = {count = 0} in
  fun () ->
    ctr.count <- ctr.count + 1;
    ctr.count</pre>
```

Workspace let ctr = in fun () -> ctr.count <- ctr.count + 1; ctr.count ctr.count ctr.count ctr.count count count Stack Heap fun () -> let ctr = {count = 0} in fun () -> ctr.count <- ctr.count <- ctr.count + 1; ctr.count count 0</pre>

Workspace Stack Heap | tun () -> | let ctr = {count = 0} in | fun () -> | ctr.count <- ctr.count <- ctr.count <- ctr.count <- ctr.count | ctr.

Workspace fun () -> ctr.count <- ctr.count + 1; ctr.count ctr.count ctr.count ctr.count Stack Heap fun () -> let ctr = {count = 0} in fun () -> ctr.count <- ctr.count <- ctr.count + 1; ctr.count count 0</pre>

```
Workspace

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count

ctr.count

count

c
```


NOTE: We need one refinement of the ASM model to handle local functions. Why?

The function mentions "ctr", which is on the stack (but about to be popped off)...

...so we save a copy of the needed stack bindings with the function itself. (This is sometimes called a *closure*...)


```
Workspace
Stack

mk_incr

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count 0

curr.count <- ctr.count + 1;
ctr.count</pre>
```


NOTE: Since the function had some saved stack bindings, we add them to the stack at the same time that we put the code in the workspace.

Now Let's run mk incr again

Workspace

let incr2 : unit -> int =
mk_incr ()

...time passes...

After creating incr2

One step further

- mk_incr shows us how to create different instance of local state so that we can have several different counters.
- What if we want to bundle together several operations that share the same local state?
 - e.g. incr and decr operations that work on the same counter

A Counter Object

```
(* The type of counter objects *)
type counter = {
    get : unit -> int;
    incr : unit -> unit;
    decr : unit -> unit;
    reset : unit -> unit;}
(* Create a counter object with hidden state: *)
let mk counter () : counter =
  let ctr = {count = 0} in
  { get = (fun () -> ctr.count) ;
   incr = (fun () -> ctr.count <- ctr.count + 1);</pre>
   decr = (fun () -> ctr.count <- ctr.count - 1);</pre>
   reset = (fun () -> ctr.count <- 0) ;}
```

let c1 = mk_counter ()

GUI Design

putting objects to work

Building a GUI library

Step #1: Understand the Problem

- We don't want to build just one graphical application: we want to make sure that our code is *reusable*.
- What are the concepts involved in GUI libraries and how do they relate to each other?
- How can we separate the various concerns on the project?

Project Architecture

Goal of the GUI library: provide a consistent layer of abstraction *between* the application (Paint) and the Graphics module.

Project Architecture

Goal of the GUI library: provide a consistent layer of abstraction *between* the application (Paint) and the Graphics module.

Designing a GUI library

- OCaml's Graphics library* provides very simple primitives for:
 - Creating a window
 - Drawing various shapes: points, lines, text, rectangles, circles, etc.
 - Getting the mouse position, whether the mouse button is pressed, what key is pressed, etc.
 - See: http://www.seas.upenn.edu/~cis120/current/ocaml-3.12-manual/libref/Graphics.html
- How do we go from that to a functioning, reusable GUI library?

^{*}Pragmatic note: when compiling a program that uses the Graphics module, add graphics.cmxa (for native compilation) or graphics.cma (for bytecode compilation) to OCaml Build Flags under the Projects>Properties dialog in Eclipse.

Project Architecture

Goal of the GUI library: provide a consistent layer of abstraction *between* the application (Paint) and the Graphics module.

GUI terminology - Widget*

- Basic element of GUIs: buttons, checkboxes, windows, textboxes, canvases, scrollbars, labels
- All have a position on the screen and know how to display themselves
- May be composed of other widgets (for layout)
- Widgets are often modeled by objects
 - They often have hidden state (string on the button, whether the checkbox is checked)
 - They need functions that can modify that state

^{*}Each GUI library uses its own naming convention for what we call "Widget". Java's Swing calls them "Components"; iOS UIKit calls them "UIViews"; WINAPI, GTK+, X11's widgets, etc....

GUI terminology - Eventloop

Main loop of any GUI application

• Takes "top-level" widget w as argument. That widget *contains* all others in the application.

Container Widgets for layout


```
let color_toolbar : Widget.t = hlist
  [ color_button black; spacer;
     color_button white; spacer;
     color_button red; spacer;
     color_button green; spacer;
     color_button blue; spacer;
     color_button yellow; spacer;
     color_button cyan; spacer;
     color_button magenta]
```

hlist is a container widget. It takes a list of widgets and turns them into a single one by laying them out horizontally.

paint.ml

 Challenge: How can we make it so that the functions that draw widgets (buttons, check boxes, text, etc.) in different places on the window are location independent?

Challenge: Widget Layout

- Widgets are "things drawn on the screen". How to make them location independent?
- Idea: Use a graphics context to make drawing primitives relative to the widget's local coordinates.

The graphics context isolates the widgets from the Graphics module.