Programming Languages
and Techniques
(C1S120)

Lecture 17/
Feb 28t 2014

“Objects” and GUI Design

Where we’re going...

« HW 6: Build a GUI library and client application from scratch in
OCaml

— Available soon
— Due Friday, March 7t

e Read Ch. 18 in lecture notes

e @Goals:

— Apply everything we’ve seen so far to do some pretty serious
programming

— lllustrate the event-driven programming model

— Practice with first-class functions and hidden state

— Give you a feel for how GUI libraries (like Java’s Swing) work
— Bridge to object-oriented programming

e Then: transition to Java

“Objects” and Hidden State

Objects in Java

public class - { class name

instance variable

constructor

class declaration

object creation and use

CIS120 / Spring 2012

Ptz e Carzs)
methods
public class Main {
public static void
main (String[] args) {
Counter c =_;
ks

System. out.println(-);

constructor
invocation

method call

What is an Object?

Object = Instance variables (fields) + Methods

— Field = Mutable record

— Methods = (Immutable) record of first-class functions that
update the fields

Objects encapsulate state when the methods are the only way
to mutate the fields.

Objects are first-class.

Can we get similar behavior in OCaml?

An “incr” function

This function increments a counter and return its new value each
time it is called:

type counter state = { mutable count:int }

let ctr = { count = 0 }

(* each call to incr will produce the next integer ¥*)
let incr () : int =

ctr.count <- ctr.count + 1;
ctr.count

e Drawbacks:

— No abstraction: There is only one counter in the world. If we want another,
we need another counter_state value and another incr function.

— No encapsulation: Any other code can modify count, too.

Using Hidden State

e Make a function that creates a counter state and an incr
function each time a counter is needed.

(* More useful: a counter generator: *)

let mk incr () : unit -> int =
(* this ctr is private to the returned function *)

let ctr = {count = 0} in

fun () ->
ctr.count <- ctr.count + 1;

ctr.count

(* make one incr function *)
let incrl : unit -> int = mk incr ()

(* make another incr function *)
let incr2 : unit -> int = mk incr ()

What is the result of this computation?

let mk incr () : unit -> int =
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int = mk incr ()
let incr2 : unit -> int = mk incr ()
let = incrl ()

let = incrl ()

incrl ()

1
2. 2
3. 3
4

runtime error

CIS120

What is the result of this computation?

let mk incr () : unit -> int =
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int = mk incr ()
let incr2 : unit -> int = mk incr ()
let = incrl ()

let = incr2 ()

incrl ()

1
2. 2
3. 3
4

runtime error

CIS120

Running mk_incr

Workspace Stack
let mk incr () : unit -> int =
let ctr = {count = 0} in
fun () ->

ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int =
mk incr ()

Heap

10

Running mk_incr

Workspace Stack

let mk incr : unit -> unit ->
int = fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int =
mk incr ()

Heap

11

Running mk_incr

Workspace Stack

let mk incr : unit -> unit ->
int = fun () ->
let_ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int =
mk incr ()

Heap

12

Running mk_incr

Workspace Stack

let mk incr : unit -> unit ->
int =

By

let incrl : unit -> 1nt ™=
mk incr ()

Heap
fun () ->
let ctr = {count = 0} in
fun () ->

ctr.count <- ctr.count + 1;
ctr.count

13

Running mk_incr

Workspace Stack

let mk incr : unit -> unit ->
int =

By

let incrl : unit -> 1nt ™=
mk incr ()

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

14

Running mk_incr

Workspace Stack

let incrl
mk incr ()

: unit

A\

mk_incr

-> int =

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

15

Running mk_incr

Workspace Stack

let incrl
mk _incr ()

: unit

A\

mk_incr

-> int =

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

16

Running mk_incr

Workspace

Stack

let incrl : unit -> int =

(G~iLL\§§§--~_;

“

mk_incr

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

17

Running mk_incr

Workspace

Stack

let incrl : unit -> int =

(K

“

mk_incr

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

18

Running mk_incr

Workspace Stack /\j Heap
mk_incr / fun () ->
let ctr = {count = 0} in — let ctr = {count = 0} in
fun () -> fun () ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
ctr.count <- ctr.count + 1; () ctr.count

ctr.count

19

Running mk_incr

Workspace Stack /\j Heap
mk_incr / fun () ->
let ctr = {count = 0} in - let ctr = {count = 0} in
fun () -> fun () ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
ctr.count <- ctr.count + 1; () ctr.count

ctr.count

20

Running mk_incr

Workspace Stack /_)1 Heap
: mk_incr | ¢ fun () -> .
let ctr = 1in - let ctr = {count = 0} in
fun () ->
fun () -> let incrl : unit -> int = ctr.count <- ctr.count + 1;

ctr.count <- ctr.count + 1; () ctr.count

ctr.count

count 0 l

21

Running mk_incr

Workspace Stack /_)1 Heap
: mk_incr | ¢ fun () -> .
let ctr =% 1in - let ctr = {count = 0} in
fun () ->
fun () -> let incrl : unit -> int = ctr.count <- ctr.count + 1;

ctr.count <- ctr.count + 1; () ctr.count

ctr.count

count 0 l

22

Running mk_incr

Workspace Stack /_)1 Heap
mk_incr / fun () ->
fun () -> - let ctr = {count = 0} in
. fun () ->
ctr.count <- ctr.count + 1; let incrl : unit —> int - ctr.count <- ctr.count + 1:
ctr.count () ctr.count

ctr 0’/—\

count 0 I

23

Running mk_incr

Workspace Stack /\j Heap
mk_incr / fun () ->
fun () -> — let ctr = {count = 0} in
. fun () ->
ctr.count <- ctr.count + 1; let incrl : unit —> int - ctr.count <- ctr.count + 1:
ctr.count () ctr.count

ctr 0”"—_—--.-"“ﬁsk

count 0 I

24

Local Functions

Workspace Stack /\;1 Heap
mk_incr v’ fun () ->
— let ctr = {count = 0} in
fun () ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
(_) ctr.count

ctr 0’/\

count 0

ctr | ®

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

NOTE: We need one refinement of the

ASM model to handle local functions.
Why?

...S0 we save a copy of the
needed stack bindings with
the function itself. (This is

_ _ Y _ sometimes called a closure...)
The function mentions “ctr”, which

is on the stack (but about to be
popped off)... 25

Local Functions

Workspace Stack N Heap
mk_incr 4 fun () ->
— let ctr = {count = 0} in
fun () ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;

() ctr.count

ctr 0’/—\

count 0 I

ctr |

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

26

Local Functions

Workspace

Stack Heap

let incrl -> int

//_/1 fun () o>

let ctr = {count = 0} in

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

mk_incr

count 0 I

ctr |

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

27

Local Functions

Workspace

Stack

Heap

let incrl

unit

-> int

mk_incr

‘/,,—~\\\~‘;1 fun () o>

let ctr = {count

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

= 0} in

count

ctr

o

fun () ->
ctr.count <- ctr.count + 1;

ctr.count

28

Local Functions

Workspace Stack Heap

//\} fun () ->

let ctr = {count = 0} in

fun () ->
incrl ‘/ ctr.count <- ctr.count + 1;

ctr.count

mk_incr

count 0 |

ctr

5
L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

Note how the count record
is accessible only via the
incrl function. This is the
sense in which the state

is “local” to incrl.

29

Now let’s run “incrl ()”

Workspace Stack

incrl ()

mk_incr

A\

incrl

A

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count 0 l

ctr |

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

30

Now let’s run “incrl ()”

Workspace Stack

incrl ()

mk_incr

A\

incrl

A

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count 0 l

ctr |

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

31

Now let’s run “1ncrl ()”

Workspace Stack Heap

//_)1 fun () o>

let ctr = {count = 0} in

fun () ->
(\()) incrl /q ctr.count <- ctr.count + 1;

mk_incr

ctr.count

count 0 I

ctr.count

ctr |*7
% fun () ->
ctr.count <- ctr.count + 1;

32

Now let’s run “1ncrl ()"

Workspace Stack Heap

‘//’—\\\\‘;1 fun () ->

let ctr = {count = 0} in

fun () ->
B incrl / ctr.count <- ctr.count + 1;

mk_incr

ctr.count

count 0 I

ctr.count

ctr |*7
% fun () ->
ctr.count <- ctr.count + 1;

33

Now let’s run “incrl ()”

Workspace Stack /\)1 Heap
mk_incr / fun () ->
ctr.count <- ctr.count + 1; = let ctr = {count = 0} in
fun () ->
ctr.count incrl 0//\ ctr.count <- ctr.count + 1;
ctr.count
L) |
L~ count 0 l
ctr
ctr | ®
\./ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

NOTE: Since the function had
some saved stack bindings,
we add them to the stack

at the same time that we put
the code in the workspace.

34

Now let’s run “incrl ()”

Workspace

ctr.count <- ctr.count + 1;
ctr.count

Stack
mk_incr //\j
incrl /q
L)
ctr | o d

Heap
fun () ->
let ctr = {count = 0} in
fun () ->

ctr.count <- ctr.count + 1;
ctr.count

count

ctr

o=

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

35

Now let’s run “1ncrl ()”

Workspace

ctr.

.count <- ctr.count + 1;
ount

Stack

Heap

mk_incr

‘/,,—~\\\~‘;1 fun () o>

let ctr = {count = 0} in

incrl

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

(G

/ count 0 I

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

36

Now let’s run “1ncrl ()”

Workspace

ctr.

.count <- ctr.count + 1;
ount

Stack

Heap

mk_incr

‘/,,—~\\\~‘;1 fun () o>

let ctr = {count = 0} in

incrl

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

(G

/ count 0 I

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

37

Now let’s run “incrl ()”

Heap

‘//’—\\\\“;’ fun () ->

let ctr = {count = 0} in

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

Workspace Stack
mk_incr
.count <- .count + 1; _—
ctr eount incrl
L)

A/ count 0 l

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

38

Now let’s run “1ncrl ()”

Heap

‘//’—\\\\“;’ fun () ->

let ctr = {count = 0} in

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

Workspace Stack
mk incr
.count <- % .count + 1; —
ctr eount |ncr1
L)

/J’/ count 0 l

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

39

Now let’s run “incrl ()”

Workspace

ctr.

.count <- 0 + 1;
ount

Stack

Heap

mk_incr

‘//,-_;1 fun () o>

let ctr = {count = 0} in

incrl

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

(G

/ count 0 I

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

40

Now let’s run “incrl ()”

Workspace

ctr.

.count <- 0 + 1;
ount

Stack

Heap

mk_incr

‘//,-_;1 fun () o>

let ctr = {count = 0} in

incrl

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

(G

/ count 0 I

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

41

Now let’s run “incrl ()”

Heap

‘//,-_;1 fun () o>

let ctr = {count = 0} in

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

Workspace Stack
mk_incr
.count <- 1; -
ctr eount incrl
)

/ count 0 I

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

42

Now let’s run “incrl ()”

Heap

‘//,-_;1 fun () o>

let ctr = {count = 0} in

fun () ->
/ ctr.count <- ctr.count + 1;

ctr.count

Workspace Stack
mk_incr
& .count <- 1; -
ctr incrl
)

/ count 0 I

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

43

Now let’s run “1ncrl ()”

Workspace Stack Heap

//_)1 fun () o>

let ctr = {count = 0} in

()7
fun () ->
ctr.count incrl /q ctr.count <- ctr.count + 1;

ctr.count

mk_incr

(G

coun 1

ctr //

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

44

Now let’s run “1ncrl ()”

Workspace Stack Heap

//_)1 fun () o>

let ctr = {count = 0} in

s fun () —>
ctr.count incrl /q ctr.count <- ctr.count + 1;

ctr.count

mk_incr

(G

count 1 I

ctr //

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

45

Now let’s run “incrl ()”

Workspace Stack
ctr.count mk—incr //\j
incrl /q
)
ctr | -~

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count 1 I

ctr |

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

46

Now let’s run “incrl

()II

Workspace Stack

r.count

mk_incr //\')'
incrl /q

(G

ctr

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count 1 I

ctr |

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

47

Now let’s run “1ncrl ()"

Workspace Stack Heap

\. count

‘//’—\\\\“;’ fun () ->

let ctr = {count = 0} in

fun () ->
incrl / ctr.count <- ctr.count + 1;

mk_incr

— ctr.count

(G

A/ count 1 l

ctr | 7

ctr |

ctr.count

/L/ fan O >
ctr.count <- ctr.count + 1;

48

Now let’s run “incrl ()~

Workspace Stack /_/1 Heap
mk_incr 4 fun () ->
4 .count - let ctr = {count = 0} in
fun () ->
incrl / ctr.count <- ctr.count + 1;
L ctr.count
L)

A/ count 1 l

ctr | 7

ctr |

/L/ fan O >
ctr.count <- ctr.count + 1;

ctr.count

49

Now let’s run “1ncrl ()"

Workspace Stack Heap

"I’—\\\\‘;’ fun () ->

let ctr = {count = 0} in

fun () ->
incrl / ctr.count <- ctr.count + 1;

mk_incr

ctr.count

(G

count 1 I

ctr //

ctr |

L/ fun () ->
ctr.count <- ctr.count + 1;

ctr.count

50

Now let’s run “incrl ()”

Workspace Stack

mk_incr

21\~

incrl

O

v

2

(G

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

O

count 1 l

ctr |

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

51

Now let’s run “incrl ()”

Workspace Stack

mk_incr

2\

incrl

A

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count 1 I

ctr

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

52

Now Let’s runmk incr again

Workspace

Stack

let incr2 :

mk incr ()

unit

-> int

mk_incr

A\

incrl

o

(’\

Heap

fun () ->
let ctr = {count = 0} in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

count 1 I

ctr | ®

fun () ->
ctr.count <- ctr.count + 1;
ctr.count

53

After creating incr2

Workspace Stack Heap
‘//’—\\\\“;’ fun () —>

mk_incr

let ctr = {count = 0} in

fun () ->
incrl d/ ctr.count <- ctr.count + 1;

ctr.count
incr2 / ’\

count 1 I

ctr |

\-/ fun () —>
ctr.count <- ctr.count + 1;

ctr.count

NOTE: the two different incr functions

have separate local states because a count 0 |
new count record was created in

each call to mk_incr.
b ctr |®7
fun () ->

ctr.count <- ctr.count + 1;
ctr.count

55

One step further

mk_incr shows us how to create different instance of local
state so that we can have several different counters.

What if we want to bundle together several operations that

share the same local state?
— e.g. incr and decr operations that work on the same counter

A Counter Object

(* The type of counter objects *)
type counter = {

get : unit -> int;

incr unit -> unit;

decr unit -> unit;

reset : unit -> unit;}

(* Create a counter object with hidden state: *)

let mk counter () : counter =
let ctr = {count = 0} in
{get = (fun () -> ctr.count) ;
incr = (fun () -> ctr.count <- ctr.count + 1)
decr = (fun () -> ctr.count <- ctr.count - 1)

reset = (fun () -> ctr.count <- 0) ;}

e e

57

let cl

= mk cou

nter ()

Stack

Heap

mk_counter

cl

//\j fun () ->

let ctr = {count = 0} in

-}

get

—_

incr

count 1 I

ctr

fun () -> ctr.count

decr

reset

fun () ->
ctr.count <- ctr.count + 1

]
fun () ->

ctr.count <- ctr.count — 1

fun () ->
ctr.count <- 0

58

putting objects to work

Building a GUI library

|O Point| |O Line| |® Ellipse| |O Text| Thick lines| O Copy| |O Paste| |Undo| [Ouit]
(m] (] (m] [=] WO (] [=] [m] Text buffers] |

/.
T —

Step #1: Understand the Problem

* We don’t want to build just one graphical application: we
want to make sure that our code is reusable.

 What are the concepts involved in GUI libraries and how do
they relate to each other?

 How can we separate the various concerns on the project?

Project Architecture

GUI Eventloop Widget
Library
Gcetx
Native OCaml’s Graphics Module (graphics.cma)
graphics
library

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Project Architecture

Application \ --- :

Paint
GUI Eventloop Widget
Library
Gcetx

Native
graphics
library

OCaml’s Graphics Module (graphics.cma)

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Designing a GUI library

 OCaml’s Graphics library* provides very simple primitives for:
— Creating a window
— Drawing various shapes: points, lines, text, rectangles, circles, etc.

— Getting the mouse position, whether the mouse button is pressed,
what key is pressed, etc.

— See: http://www.seas.upenn.edu/~cis120/current/ocaml-3.12-
manual/libref/Graphics.html
* How do we go from that to a functioning, reusable GUI
library?

*Pragmatic note: when compiling a program that uses the Graphics module, add graphics.cmxa
(for native compilation) or graphics.cma (for bytecode compilation) to OCaml Build Flags under
the Projects>Properties dialog in Eclipse.

Project Architecture

Application PSSR U R C R S TR O SR T ST T R TOS T TG ST VT ST TCOreren: :
\ Paint

Eventloop Widget
Gcetx
Native . OCaml’s Graphics Module (graphics.cma)
graphics
library

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

GUI terminology — Widget*

 Basic element of GUIs : buttons, checkboxes, windows,
textboxes, canvases, scrollbars, labels

* All have a position on the screen and know how to display
themselves

 May be composed of other widgets (for layout)

* Widgets are often modeled by objects

— They often have hidden state (string on the button, whether the
checkbox is checked)

— They need functions that can modify that state

*Each GUI library uses its own naming convention for what we call “Widget”. Java’s Swing calls
them “Components”; iOS UIKit calls them “UlViews”; WINAPI, GTK+, X11’s widgets, etc....

GUI terminology - Eventloop

 Main loop of any GUI application

let run (w:widget) : unit =

Graphics.open graph ""; (* open a new window *)
Graphics.auto synchronize false;

let rec loop () : unit =
Graphics.clear graph ();
repaint w;
Graphics.synchronize (); (* force window update *)
wait for user input (mouse movement, key press)
inform w about it so widgets can react to it;
loop () (* tail recursion! ¥*)
in
loop ()

* Takes “top-level” widget w as argument. That widget contains all others in
the application.

68

Container Widgets for layout

(1N

: Widget.t = hlist

let color toolbar
[color button
color button
color button
color button
color button
color button
color button
color button

black;
white;
red;
green;
blue;
yellow;
cyan;
magenta]

spacer;
spacer;
spacer;
spacer;
spacer;
spacer;
spacer;

hlist is a container widget.

It takes a list of widgets and
turns them into a single one
by laying them out
horizontally.

paint.ml

* Challenge: How can we make it so that the functions that
draw widgets (buttons, check boxes, text, etc.) in different
places on the window are location independent?

Challenge: Widget Layout

* Widgets are “things drawn on the screen”. How to make them
location independent?

* |dea: Use a graphics context to make drawing primitives
relative to the widget’s local coordinates.

Paint.ml

Application \ --- :

gu—

The graphics
context
isolates the
widgets from
the Graphics
module.

GUI Eventloop.m Widget.ml

Library
Getx.ml

|

Native |
graphics
library

OCaml’s Graphics Module (graphics.cma)

70

