Programming Languages
and Techniques
(C1S120)

Lecture 19
March 5, 2014

GUI Design llI: Events



How far have you gotten in HW 67?

Task 1 (Better layout)
. Task 2 (Drawing points)
. Task 3 (Preview/drag-and-drop)

. Task 5 (Checkboxes/line thickness)

1.
2
3
4. Task 4 (Drawing ellipses)
5
6. Task 6 (Something cool)
7

. Task 0 / Haven't started yet!

CIS120




Project Architecture

Application PSSR U R C R S TR O SR T ST T R TOS T TG ST VT ST TCOreren: :
\ Paint

-

GUI Eventloop Widget
Library -

Gcetx
-

Native — OCaml’s Graphics Module (graphics.cma)
graphics
library




User interaction

CIS 120




User Interactions

* Problem: When a user moves the mouse, clicks the button, or
presses a key, the application should react. How?

swdemo.ml

let w = .. (* top-level widget *)

let run () :unit =
(* open the window *)
Graphics.open graph "";
let g = Getx.top level in
(* draw the widget *)
w.repaint g;
(* infinite loop so we can see the window. *)

let rec loop () : unit = loop () in
loop ()




Solution: The Event Loop

eventloop.ml

let run (w:widget) : unit =
Graphics.open graph "";
Graphics.auto synchronize false;
let g = Getx.top level in

let rec loop () =
Graphics.clear graph ();
w.repaint g;
Graphics.synchronize ();

let e = Getx.wait for event g in (* wait for user input ¥*)
w.handle g e; (* react to event *)
loop ()
in
loop ()

* The run function takes in the root widget “w”, creates the graphics window, and then
enters an infinite loop.

* The loop clears the window, repaints it, waits for a user event, and then asks the root
widget to handle that event.



Events

 Whenever user interaction happens, the GUI library generates

an “event”

— Mouse button press or release

— Mouse movement

— Keypress
gext.mili
type event
val wait for event : gctx
val event pos : gctx
val button pressed : gctx
val is keypressed : gctx
val get key : gctx

event
event
event
event
event

->
->
->
->

position
bool
bool

char

The graphics context translates the location
of the event to widget-local coordinates



Reactive Widgets

widget.mli
type widget = {
repaint : gctx -> unit;
size : gctx -> Getx.dimension;
handle : gctx -> Gectx.event -> unit (* NEW! *)

* Widgets have a “method” for handling events
* The eventloop waits for an event and then gives it to the root widget

* The widgets forward the event down the tree until some widget
handles the event (or no suitable widget is found, in which case the
event is ignored



Event-handling: Containers

Container widgets propagate events to their children:

=

border

{

label

User clicks,
generating
’ event e
borlzler .handlege /
l i
hpair [.handlegle Hello V‘ld
hpair Mhandle g2 e

space borden | .handle g3 e

{

label ‘l. handle g4 e

Widget tree On the screen



Event Handling: Routing

* When a container widget handles an event, it passes the event to the
appropriate child

* The gctx must be translated so the child can interpret the event in its own
local coordinates.

widget.ml
let border (w:widget):widget =
{ repaint = ..;
size = ..;

handle = (fun (g:Gctx.gctx) (e:Gctx.event) ->
w.handle (Gctx.translate g (2,2)) e);



Routing events through hpair widgets

* The event handler of an hpair must check to see whether the event should
be handled by the left or right widget.

— Check the event’s coordinates against the size of the left widget

— If the event is within the left widget, let it handle the event

— Otherwise check the event’s coordinates against the right child’s

— If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gectx.gctx) (e:Gectx.event) ->
if event within g e (wl.size g)
then wl.handle g e
else
let g = (Gctx.translate g (fst (wl.size g), 0)) in
if event within g e (w2.size gqg)
then w2.handle g e
else ());



eventdemo.ml



Stateful Widgets

What state do the event handlers modify?

How can widgets expose this state to the
application?




A stateful 1abel Widget

Built-in mutable

let label (s: string) : widget = record type

let r = { contents = s }*1in
{ repaint =
(fun (g: Gctx.gctx) ->
Gctx.draw string g (0,0) r.contents);
handle = (fun = -> ());
size = (fun (g: Gctx.gctx) ->
Gectx.text size g r.contents)

The label “object” can make its string mutable. The three “methods” can
encapsulate that string.

But what if the application wants to change this string in response to an
event?



A stateful 1abel Widget

widget.ml
type label controller = { set label: string -> unit }

let label (s: string) : widget * label controller =
let r = { contents = s } in
({ repaint =
(fun (g: Gectx.gctx) ->
Gctx.draw string g (0,0) r.contents);
handle = (fun = -> ());
size = (fun (g: Gctx.gctx) ->
Gectx.text size g r.contents)

}o

{ set label = fun (s: string) -> r.contents <- s })

A controller object gives access to the shared state.
— e.g.the label controller object provides a way to set the label

e Each kind of stateful widget gets its own kind of controller
— As weé’ll see, Java’s subtyping helps manage this complexity



Event Handling Summary

An event is a signal
— e.g. a mouse click or release, mouse motion, or keypress

Events carry data
— e.g. state of the mouse button, the coordinates of the mouse, the key pressed

An event can be handled by some widget
— The top-level loop waits for an event and then gives it to the root widget.

— The widgets forward the event down the tree until some widget handles the event
(or no suitable widget is found, in which case the event is just dropped)

— e.g. a button handles a mouse click event

Typically, the widget that handles an event updates some state of the GUI
— e.g. torecord whether the light is on and change the label of the button

User sees the reaction to the event when the GUI repaint itself
— e.g. button has new label, canvas is a new color



Event Listeners

How to react to events in a modular way?




Event Listeners

Widgets may want to react to many different sorts of events

Example: Button
— button click: changes the state of the paint program and button label
— mouse movement: tooltip? highlight?
— key press: provide keyboard access to the button functionality?

These reactions should be independent

— Each sort of event handled by a different event listener (i.e. a first-class
function)

— Reactive widgets may have several listeners to handle a triggered event
— Listeners react in sequence, earlier ones may prevent the event from
propagating

A notifier is a container widget that adds event listeners to a node in the
widget hierarchy

Note: this way of structuring event listeners is based on Java’s Swing
Library design (we use Swing terminology).



Listeners and Notifiers Pictorially

bo%ﬂ

er

{
4r””:;E%§é:::=E:><\

border hpair
!
label space borde
notifie

Widget tree

/‘

User clicks,
generating
event e

/

Hello

1

H:JZ:H3€[]

lg,—-_--mggﬂsfg

label

On the screen




Notifiers

* A notifieris a container widget that adds event listeners to a
node in the widget hierarchy.

 The event listeners “eavesdrop” on the events flowing through the
node
— The event listeners are stored in a list

— They react in order, if one of them handles the event the later ones do
not hear it

— If none of the listeners handle the event, then the event continues to
the child widget

* List of event listeners can be updated by using a notifier_controller



Listeners

widget.ml

type listener result =
| EventFinished
| EventNotDone

type listener = Gectx.gctx -> Gectx.event -> listener result

(* Performs an action upon receiving a mouse click. *)
let mouseclick listener (action: unit -> unit) : listener =
fun (g:Gctx.gctx) (e: Gectx.event) ->
1f Gectx.button pressed g e
then (action (); EventFinished)
else EventNotDone

* Alistener returns EventFinished if it handled the event (i.e. the event should not
be passed on) and EventNotDone otherwise.

* A mouseclick_listener performs an action and stops the event when it “hears” a
mouse click, and passes on the event to later listeners otherwise



Notifiers and Notifier Controllers

widget.ml
type notifier controller = { add listener: listener -> unit }

let notifier (w: widget) : widget * notifier controller =
let listeners = { contents = [] } in
({repaint = w.repaint;
handle = (fun (g:Gctx.gctx) (e: Gectx.event) ->
let rec loop (l: listener list) : unit =

begin match 1 with Loop through the list
| 1 -> w.handle g e _ of listeners, allowing
| h::t -> begin match h g e with each one to process

| EventFinished -> ()
| EventNotDone -> loop t
end

the event. If they all
pass on the event,
send it to the child.

end in
loop listeners.contents);
size = w.size
o
{ add listener =
fun newl -> listeners.contents <- The controller allows
newl::listeners.contents } | new listeners to be

added to the list.



Buttons (at last!)

widget.ml
(* A text button *)
let button (s: string) : widget * label controller *
notifier controller =
let (w, lc) label s in

let (w', nc) notifier w in

(w', lc, nc)

* A button widget is just a label wrapped in a notifier

 Add a mouseclick_listener to the button using the
notifier_controller

* (For aesthetic purposes, you can but a border around the
button widget.)



Did you attend class today?

1. Yes

CIS120



