Programming Languages
and Techniques
(C1S120)

Lecture 21
March 17, 2014

Connecting OCaml to Java

Announcements

No Weirich OH today -> Wed 1-3PM instead
Read Chapters 19-22 of the lecture notes
HWO7 available

— Image processing in Java (p
— Due Tuesday, March 25th at 11:59:59pm Mtﬂ%’(m

8.0 06 Pennstagram

| Loadnewimage | | Saveimage | | Undo | | Quit |

What is the value of ans at the end of this program?

Counter x
x.1inc(Q);
int ans = x.inc(Q);

new Counter();

1

2

3
NullPointerException

it

Answer: 2

public class Counter {
private int r;

public Counter () {
r=20;
}

public int inc O {
r=r+1;
return r;

}

What is the value of ans at the end of this program?

el S

Counter x;
x.1nc(Q);
int ans = x.1nc(Q);

1
2
3
NullPointerException

Answer: NPE

public class Counter {
private int r;

public Counter () {
r=20;
}

public int inc O {
r=r+1;
return r;

}

What is the value of ans at the end of this program?

Counter x = new Counter();
x.1inc(Q);)
Counter y = x; public class Counter {
y.incQ; : :
int ans = x.incQ); private int r;
1. 1 public Counter () {
2. 2 r=0;
3. 3 }
4. NullPointerException public int inc O {
r=r+1;
return r;
}
ks

Answer: 3

Java Core Language

differences between OCaml and Java

Expressions vs. Statements

e OCamlis an expression language
— Every program phrase is an expression (and returns a value)

— The special value () of type unit is used as the result of expressions
that are evaluated only for their side effects

— Semicolon is an operator that combines two expressions (where the
left-hand one returns type unit)

* Javais a statement language

— Two-sorts of program phrases: expressions (which compute values)
and statements (which don’t)

— Statements are terminated by semicolons
— Any expression can be used as a statement (but not vice-versa)

Types

* Asin OCaml, every Java expression has a type

 The type describes the value that an expression computes

Expression form Example Type

Variable reference X Declared type of variable
Object creation new Counter () Class of the object
Method call c.inc() Return type of method
Equality test X ==y, Xx.equals(y) boolean

Assignment x=5 don’t use as an expression!!

Type System Organization

primitive types
(values stored
“directly” in the
stack)

structured types
(a.k.a. reference
types — values
stored in the heap)

generics

abstract types

OCaml

int, float, char, bool, ...

tuples, datatypes, records,
functions, arrays

(objects encoded as records
of functions)

‘a list

module types (signatures)

Java

int, float, double, char, boolean,

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are a
special case of objects)

List<A>

interfaces (flexibility)
public/private modifiers
(encapsulation)

Arithmetic & Logical Operators

equality test
inequality
comparisons

addition{string concatenation in Java

subtraction (and Ufic

multiplication

division

remainder (modulus)

logical “not”

logical “and” (short-circuiting)

logical “or” (short-circuiting)

Equality

like OCaml, Java has two ways of testing reference types for
equality:
— “pointer equality every object provides an “equals”
0l==02 | method that “does the right thing”
— “deep equality” depending on the type of object

ol.equals(o2)

Normally, you should use == to compare primitive types and
“.equals” to compare objects

Strings

String is a built in Java class
Strings are sequences of characters

"Java" "3 Stooges" "EXIU"
+ means String concatenation (overloaded)
"3" + " " + "Stooges" = "3 Stooges”

Text in a String is immutable (like OCaml)
— but variables that store strings are not

— String x = "0Caml";

- String y = x;

— Can't do anything to X so that y changes

Always use .equdls to compare Strings

New: Operator Overloading

* The meaning of an operator is determined by the types of
the values it operates on
— Integer division
4/3 =1
— Floating point division
4.0/3.0=1.3333333333333333
— Automatic conversion

4/3.0 = 1.3333333333333333

* Overloading is a general mechanism in Java

— we’ll see more of it later

Style

public class Turtle {
private Turtle Turtle;
public Turtle() { }

public Turtle Turtle (Turtle Turtle) {
return Turtle;

¥
¥

http://www.cis.upenn.edu/~cis1xx/resources/codingStyleGuidelines.html

Static Methods

aka “functions”

Static methods: by example

public class Max {

public static int max (int x, int y) {

if x>y {
{'etur'n X3 closest analogue to
} else { . functions in OCam|
return y;
}

}

public static int max3(int x, int y, int z) {
return max(max (x,y), z);

} Internally, call with just))

public static void

if then and else cases must main (String[] args) {
be statements

System. out.printin(Max.max(3,4));
return statement return; Externally, call with

terminates a method call ks name of the class

Static == Decided at Compile Time
Dynamic == Decided at Run Time

Static vs. Dynamic Methods

e Static Methods are independent of object values

— Cannot refer to the local state of objects (fields or dynamic methods)

e Use static methods for:
— Non-0O0 programming

— Primitive types: Math.sin(60), Integer.toString(3),
Boolean.valueOf(“true”)

— “public static void main”

* “Normal” methods are dynamic

— Need access to the local state of the object on which they are invoked
— We only know at runtime which method will get called

void isTheTrueString (Object o) {
o.equals (“The True String”);
by

Method call examples

Calling a (dynamic) method of another object that returns a number:

x =o0.m() + 5;

Calling a static method of another object that returns a number:

x =C.mQ + 5;

Calling a method of another class that returns void:

Static C.mQ); Dynamic o.m();

Calling a static or dynamic method of the same class:

mQ; x =m0 + 5;
Calling (dynamic) methods that return objects: Watch for null!

0.mQ).nQ);
0.mQ).nC).xQ.y.z().a).b().cQ.d().eQ);

X
X

