Programming Languages
and Techniques
(CIS120)

Announcements

Lecture 26
March 28, 2014

Extension

HWO08 (GUI Programming Il) is due next Tuesday at
11:59:59pm

Midterm 2 is Friday, April 4" in class

— Mutable state (in OCaml and Java)
Objects (in OCaml and Java)

— ASM (in OCaml and Java)

— Reactive programming (in OCaml and Java)
Arrays (in Java)

Subtyping (in Java)

Everything up through today’s lecture and HWO08 is fair game

First-class functions via inner classes

public interface Fun {
public String apply (String x);
3

Anonymous Inner Classes

i
; AN
——]

public static StringlList transform (Fun f, StringlList pl) {
if (pl.isNilQ)) {
return new NilQ);
} else {
return new Cons (f.apply(pl.hd()), transform(f, pl.t1(D));
}
}

StringlList z = transform
(new FunQ {
public String apply (String x) {
return x.toUpperCase();
T
X);




interface Fun {
public int apply(int x);
1

class A {
Fun g = new Fun O {
public int apply(int x) {
return x + 1;
1

1

int mQ) {
int x = g.apply(l);
int y = g.apply(x);
return g.apply(y);

What is the result of a method
call to m?

ubhwmNE

NullPointerException
Infinite loop

NOUTRAWN -

interface Fun {
public int apply(int x);

class C {
private int z = 1;

Fun g = new Fun Q {
public int apply(int x) {

z=12z+ 1;
return z;
1
int mQ {
int w = g.apply(l);
return g.apply(w);
3

}

What is the result of a method
call to m?

ubhwmNE

NullPointerException
Infinite loop

NOUTRAWN -

interface Fun {
public int apply(int x);
1

class B {
Fun g = new Fun O {
public int apply(int x) {

What is the result of a method
call to m?

return x + 1; 1.1
} 2.2
}; 3.3
Fun h = new Fun QQ { 4. 4
public int apply(int x) { 5.5
return x + 2; 6. NullPointerException
} 7. Infinite loop
I
int mQ) {
int x = g.apply(l);
g =h;
int y = g.apply(x;
Fun k = g;
return k.apply(y);
3
}
class D { What is the result of a method

int m(final int z) {
final int w = 1;

Fun g = new Fun (O {
public int apply(int x) {
return X + z + Ww;
}
1

return g.apply(2);
}

call m(1)?

ubhwNE

NullPointerException
Infinite loop

NOUTRAWN -




Anonymous Inner class

new InterfaceOrClassName() {

New expression form: define a class and create an object
from it all at once

public void methodl(int x) {
// code for methodl

} Normal class
public void method2(char y) { definition,
// code for method2 no constructors
} allowed
3
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!
used to create it Can't really refer to it.

Like first-class functions

Anonymous inner classes are the Java equivalent of Ocaml
first-class functions

Both create "delayed computation" that can be stored in a
data structure and run later

— Code stored by the event / action listener

— Code only runs when the button is pressed

— Could run once, many times, or not at all

Both sorts of computation can refer to variables in the current
scope

— Java: only instance variables (fields) and variables marked final

— OCaml: Any available variable (all stack variables are final)

Inner Classes

Useful in situations where two objects require “deep access”
to each other’s internals

Replaces tangled workarounds like “owner objects”
— Solution with inner classes is often easier to read
— No need to allow public access to instance variables of outer class

Anonymous inner classes can only refer to variable stored on
the stack marked final
— class instance variables are stored in the heap

First class functions for real!

The recent Java 8 release includes better notation for first-
class functions, including anonymous abstractions




Extension

Sharing code

between related types

Interface Extension

Build rich interface hierarchies by extending existing
interfaces.

public interface Displaceable {

Interfaces and Subtyping

interfaces

Displaceable Area supertypes
classes implement
interfaces
Point Circle Rectangle subtypes

classes

Types can have many different supertypes / subtypes

Where do these classes and interfaces come from?
Can we make it easier to define them?

Interface Hierarchy

int getX(Q);
int getYQ);
void move(int dx, int dy);

The Shape type includes all
the methods of Displaceable
and Area, plus the new

¥ getBoundingBox method.

public interface Area {
double getArea();

}

public interface Shape extends Displaceable, Area {
Rectangle getBoundingBox();
}

| Note “extends” keyword. P

Displaceable B class Point implements Displaceable {
\\ ,/,
S~ L’ class Circle implements Shape {
\\ e
Shape
class Rectangle implements Shape
S~ g p pe {
Point Circle Rectangle }

Shape is a subtype of both Displaceable and Area.

Circle and Rectangle are both subtypes of Shape, and, by
transitivity, both are also subtypes of Displaceable and Area.

Note that one interface may extend several others.



Class Extension: Inheritance

* Classes, like interfaces, can also extend one another.
— Unlike interfaces, a class can extend only one other class.

* The extending class inherits all of the fields and methods of its superclass,
and may include additional fields and methods.

public class Counter {
private int x;

public Counter () { x = 0; }
public void incBy(int d) { x = x + d; } Same “extends” keyword,
public int get() { return x; } 1 different form of

} / extension
public class Decr extends Counter {

private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

}

Subtyping with Inheritance

Interfaces

Displaceable Area

SN, 4
Classes / e 7
~ ’
N

Displaceablelmpl e
P RN P Shape

’

4
sS4

N

Point Circle Rectangle
-Type C is a subtype of D if D is reachable from C
by following zero or more edges upwards in the
------- Extends 1
hierarchy.
Implements . . L
- e.g. Circle is a subtype of Area, but Point is not

Simple Inheritance

* In simple inheritance, the subclass only adds new fields or
methods

* Use simple inheritance to share common code among related
classes
— Example: Point, Circle, and Rectangle have identical code for getX(),
getY(), and move() methods when implementing Displaceable

— Share this common code in a class “Displaceablelmpl”. The classes

Point, Circle, Rectangle should inherit fields and methods from this
class

* Inheritance captures the “is a” relationship between objects

(e.g. a Caris a Vehicle)

— Class extension should never be used when “is a” does not relate the subtype
to the supertype

Object

public class Object {
boolean equals(Object o) {
.. // test for equality

}
String toString() {
.. // return a string representation

// other methods omitted

* Object is the root of the class tree.
— Classes that leave off the “extends” clause implicitly extend Object
— Arrays also implement the methods of Object

— This class provides methods useful for all objects to support

* Object is the highest type in the subtyping hierarchy.




Subtyping

"""" Subtype by fiat

Displaceable Area

2
S 4
S s
~. /
s %

Displaceablelmpl
P RN P Shape

Inheritance: Constructors

Contructors cannot be inherited (they have the wrong names!)
— Instead, a subclass invokes the constructor of its super class using the keyword ‘super’.

— Super must be the first line of the subclass constructor, unless the parent class
constructor takes no arguments, in which it is OK to omit the call to super (it is called
implicitly).

Point Circle Rectangle - Interfaces extend (possibly many) interfaces
- Classes implement (possibly many) interfaces
- Classes (except Object) extend exactly one
------- Extends other class (Object if implicit)

Implements - Interface types (and arrays) are subtypes “by
fiat” of Object

Other forms of inheritance

Java has other features related to inheritance (some of which
we will discuss later in the course):

— A subclass might override (re-implement) a method already found in
the superclass.

— A class might be abstract —i.e. it does not provide implementations
for all of its methods (its subclasses must provide them instead)
These features are hard to use properly and the need for
them arises in special cases
— Making reusable libraries
— Special methods: equals and toString

We recommend avoiding all forms of inheritance (even
“simple inheritance”) when possible — prefer interfaces and
composition.

Especially avoid overriding.

class D {
private int x;
private int y;
public D (int initX, int initY) { x = initX; y = initY; }
public int addBoth() { return x + vy; }
}

class C extends D {
private int z;
public C (int initX, int initY, int initZ) {
super(initX, initY);
z = initZ;

}
public int addThree() {return (CaddBoth() + z); }




