Programming Languages
and Techniques
(C1S120)

Lecture 32
April 14, 2014

java.io
Exceptions






Java |/O Design Strategy

1. Understand the concepts and how they relate:
— What kind of stream data are you working with?
— Is it byte-oriented or text-oriented?
* InputStream vs. InputReader
— What is the source of the data?

* e.g. file, console, network, internal buffer or array

— Does the data have any particular format?
* e.g. comma-separated values, line-oriented, numeric
e Consider using Scanner or another parser

2. Design the interface:
— Browse through java.io libraries (to remind yourself what’s there!)
— Determine how to compose the functionality your need from the library

— Some data formats require more complex parsing to convert the data stream
into a useable structure in memory



/O Streams

 The stream abstraction represents a communication channel
with the outside world.

— can be used to read or write a potentially unbounded number of data
items (unlike a list)

— data items are read from or written to a stream one at a time

* The Java I/O library uses subtyping to provide a unified view
of disparate data sources and sinks.

input streams output streams

...the quick brown fox... ..au clair de la lune...

Application

...3.14159265358979... ..ACCTGAACTCAT...




Different kinds of 10

e Character-oriented
— For working with text (i.e. .txt files, webpages)
— Reads/writes data in 16-bit chunks

— Uses “character encoding” to interpret that data (multiple character sets
possible, all agree for Latin characters)

— Examples: subclasses of Reader and Writer
e Byte-oriented (aka “Binary” input)
— Simplest form of input/output
— Reads/writes data in 8-bit chunks
— Interpretation of that data is up to your program
— Gotcha: can also interpret 8-bit chunks as characters

e Special purpose file formats
— Built on top of byte- or character- based formats
— Examples: CSV, XML, JPG, MP3

— Parsing is the process of converting the data stream into a useable
structure in memory



Byte-oriented Streams

At the lowest level, a stream is a sequence of binary numbers

197 46 182 170

The simplest IO classes break up the sequence into 8-bit
chunks, called bytes. Each byte corresponds to an integer in
the range 0 — 255.



InputStreamand OutputStream

Abstract classes* that provide basic operations for the Stream class hierarchy:

abstract int read (); // Reads the next byte of data
abstract void write (int b); // Writes the byte b to the output

These operations read and write int values that represent bytes
— range 0-255 represents a byte value
— =1 represents “no more data” (when returned from read)

e java.io provides many subclasses for various sources/sinks of data:

— files, audio devices, strings, byte arrays, serialized objects

Subclasses also provides rich functionality:
— encoding, buffering, formatting, filtering

*Abstract classes are classes that cannot be directly instantiated (via new). Instead, they provide partial,
concrete implementations of some operations. In this way, abstract classes are a bit like interfaces (they
provide a partial specification) but also a bit like classes (they provide some implementation).



Binary input demo: Image.java



Binary 10 example

InputStream fin = new FileInputStream(filename);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.readQ);
1f (ch == -1) {
fin.close(Q);
throw new IOException("File ended early™);
ks
data[j][1] = ch;
ks
ks

fin.close();




Binary 10 example

public Image() throws IOException {
InputStream fin = new FilelnputStream(“mandrill.pgm”);

data = new int[width][height];
for (int 1=0; 1 < width; 1++) {
for (int j=0; j < height; j++) {
int ch = fin.read(Q);
if (ch == -1) {
fin.close(Q);
throw new IOException("File ended too early");
}
data[j][1] = ch;
¥
by

fin.close();



BufferedinputStream

 Reading one byte at a time can be slow!

 Each time a stream is read there is a fixed overhead, plus time
proportional to the number of bytes read.

disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

* ABufferedInputstream presents the same interface to
clients, but internally reads many bytes at once into a buffer
(incurring the fixed overhead only once)

disk -> operating system ->>>> JVM -> program
JVM -> program
JVM -> program
JVM -> program



Buffering Example

FileInputStream finl = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(finl);

int[] data = new int[width][height];
for (int 1=0; i < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.read(Q);
if (ch == -1) {
fin.close(Q);
throw new IOException("File ended early");
ks
data[j][1] = ch;
ks
¥

fin.close();




Buffering example

public Image() throws IOException {
FileInputStream finl = new FilelnputStream("mandrill.pgm");

InputStream fin = new BufferedInputStream(finl);

data = new int[width][height];
for (int 1=0; 1 < width; i++) {
for (int j=0; j < height; j++) {
int ch = fin.read(Q);
if (ch == -1) {
throw new IOException("File ended too early");
}
data[j][1] = ch;
¥
ks

fin.close();



PrintStream Methods

PrintStream adds buffering and binary-conversion
methods to OutputStream

void println(boolean b); // write b followed by a new line
void println(String s); // writes followed by a newline

void println(); // write a newline to the stream
void print(String s); // write s without terminating the line

(output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

* Note the use of overloading: there are multiple methods called println

— The compiler figures out which one you mean based on the number of arguments, and/
or the static type of the argument you pass in at the method’s call site.

— Thejava 1/0 library uses overloading of constructors pervasively to make it easy to “glue
together” the right stream processing routines



The Standard Java Streams

java.lang.System provides an InputStream and two standard
PrintStream objects for doing console I/O.

System.out

Sys tem.1in standard output (display)

standard input (keyboard)

| > Application

standard error (display)

System.err

Note that System. in, for example, is a static member of the class System — this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.
Methods can also be static — the most common being “main”, but see also the Math class.



Character based IO

A character stream is a sequence of 16-bit binary numbers

593 46,762
\u0251 \UB6AA
‘3’ cCC
—
=1L

The character-based |0 classes break up the sequence into 16-bit
chunks, of type char. Each character corresponds to a letter
(specified by a character encoding).



Reader and Writer

Similar to the InputStream and OutputStream classes, including:

abstract int read (); // Reads the next character
abstract void write (int b); // Writes the char to the output

These operations read and write int values that represent unicode
characters

— read returns an integer in the range 0 to 65535 (i.e. 16 bits)
— value -1 represents “no more data” (when returned from read)
— requires an “encoding” (e.g. UTF-8 or UTF-16, set by a Locale)

Like byte streams, the library provides many subclasses of Reader and
Writer Subclasses also provides rich functionality.

— use these for portable text I/0

Gotcha: System. in, System.out, System.err are byte streams
— Wrap in an InputStreamReader / PrintWriter if you need unicode console I/O






Piazza question

public FileCorrector(String file) throws IOException {
BufferedReader br =
new BufferedReader(new FileReader(file));
String line;
while ((line = br.readLine()) !'= null) {
// Secret stuff in fancy while loop

by
br.close();
}
Will br be closed at the end of the constructor?
1. vyes
2. maybe

3. no



Finally

A “finally” clause of a try/catch/finally statement always gets run,
regardless of whether there is no exception, a propagated exception, or a
caught exception — or even if the method returns from inside the try.

“Finally” is often used for releasing resources that might have been held/
created by the “try” block:

public void doSomeIO (String file) {

FileReader r = null;

try {
r = new FileReader(file);
.. // do some IO

} catch (FileNotFoundException e) {
.. // handle the absent file

} catch (I0Exception e) {
.. // handle other I0 problems

} finally {
1t (r '= null) { // don’t forget null check!

try { r.close(); } catch (IOException e) {..}

ks

ks



When are throws clauses necessary?

public method(String file) throws IOException {
// do some stuff with IO

What classes of exceptions must be
declared in throws clauses?

1. Only IOExceptions
2. All exceptions defined in libraries

3. All exceptions, except those that are
subclasses of RuntimeException

4. All exceptions (if you want full style points)



Exception Class Hierarchy

Object
Type of all i
2 1
throwable objects. :
1
Throwable
P~~~ Fatal Errors: should
1 Sseeo
Subtypes of i e never be caught.
Exception must be Exception Error
declared. i
T |
_____ I
—— 1
————— [
|OException RuntimeException Subtypes of
: : RuntimeException
i ' do not have to be
i NullPointerException declared.

FileNotFoundException



Checked (Declared) Exceptions

Exceptions that are subtypes of Exception but not RuntimeException
are called checked or declared.

A method that might throw a checked exception must declare it using a
“throws” clause in the method type.

public void maybeDolIt (String file) throws AnException {
1f (..) throw new AnException(); // directly throw

Even if it doesn’t throw the exception directly

public void doSomeIO (String file) throws IOException {
Reader r = new FileReader(file); // might throw




Unchecked (Undeclared) Exceptions

* Subclasses of RuntimeException do not need to be declared via “throws”
— even if the method does not explicitly handle them.

 Many “pervasive” types of errors cause RuntimeExceptions
— NullPointerException
— IndexOutOfBoundsException
— lllegalArgumentException

public void mightFail (String file) {
1f (file.equals(“dictionary.txt”) {
// file could be null!

* The original intent was that such exceptions represent disastrous
conditions from which it was impossible to sensibly recover...



Declared vs. Undeclared?

Tradeoffs in the software design process:

Declared = better documentation

— forces callers to acknowledge that the exception exists

Undeclared = fewer static guarantees
— but, much easier to refactor code

In practice: “undeclared” exceptions are prevalent

A reasonable compromise:

— Use declared exceptions for libraries, where the documentation and usage
enforcement are critical

— Use undeclared exceptions in client code to facilitate more flexible
development



