Programming Languages
and Techniques
(C1S120)

Lecture 33
April 16, 2014

Swing |: Drawing and Event Handling

Set<String> set = new TreeSet<String> ();
Map<String, Set<String>> map =

new TreeMap<String,Set<String>> ();
set.add("1");
set.add("2");
map.put("a", set);
set.clear(); // remove all elements
set.add("3");
map.put("b",set);
System.out.println(map);

What result is printed?

1. {a=[1,2], b=[3] }

2. {a=[3], b=[3]}

3. {a=[1,2], b=[1,2] }

4. NullPointerException

CIS 120

HW 08 Feedback

Good

— | liked this homework.

— lactually liked working on this assignment a lot, I'm definitely looking forward to more GUI-related
assignments, makes the stuff we work on seem so much cooler than simply computing values.

— Satisfying end result. Not nearly as difficult as paint in OCaml.

Not so good
— HELL WEEK. SLEEP DEPRIVATION. | DONT CARE ANYMORE. JSHDLKSFGKGFDHDFG

—
Brief
— Fun
— Wow

— Cool!
— ha

Insightful

— Found a bug when | was showing off to my friends that | finally finished, good thing | had one
submission left.

— Actually took the time to understand Gctx and Notifiers this time around instead of blindly testing
things when we did GUI in OCaml... much easier and faster when you understand why you are doing
the things you are doing!

27977
— Who needs a TI-83 when you have Calculator.java?!
— please show this comment in class

HW 10: Game project

(NN Othello

File Edit Help Pass) White: 2 Black: 5

Planet Game

0 coins 0 coins
Pong 1 bomb 3 bombs

(Cinstructions) (Restart Level) Quit

Orbit Cruiser

0 asteraids Polfected

energy

CIS 120

10 Mg effective mass

(_PLAY/RESET) (_ HELP)

Announcements

e HW10 is now available. Due Wednesday, April 30th, at
11:59PM.

e Suggested steps:
— Get started early!
— Download, run, and read the code we’ve provided
— Play around with adding a few small features

— Read over our suggestions and think about what game you’d like to try
to code

— Discuss with your TAs
— Do it

CIS 120

Do you have an idea for a game already?

1. no, not yet ©

2. | have a few ideas

3. | know what | want to do

4. | started coding back in January

CIS 120

OCaml GUI review

Graphics Context
— Provides drawing operations
— Translates coordinates so that they are relative to each widget
— Keeps track of state necessary for drawing (pen color, line thickness)

Widgets
— Abstract type for "things" on the screen
— Something that can paint itself, handle events and calculate its size

type widget = { repaint : gctx -> unit,
size : gctx -> int,
handle : event -> unit }

— basic widgets: buttons, canvas, scrollbars, labels, checkboxes, radiobuttons
— container widgets: border, hpair, vpair, hlist, vlist, grid

Event Listeners
— Functions that execute when events happen
— Update the state of the application
— Widgets reflect changes when they are redrawn

Terminology overview

I [Y N T S

Graphics Context
Widget type
Basic Widgets

Container Widgets

Events

Event Listener

CIS 120

Gcetx.getx
Widget.widget

button
label

checkbox

hpair, vpair

event

mouse_listener
mouseclick_listener
(any function of
type event -> unit)

Gcetx
Widget

Button
Label

HPair, VPair

Event

EventListener

Graphics
JComponent

JButton
JLabel
JCheckBox

JPanel, Layouts

ActionEvent
MouseEvent
KeyEvent

ActionListener
Mouselistener
KeyListener

Simple Drawing

CIS 120

DrawingCanvas.java

DrawingCanvasMain.java

How do we draw a picture?

* |In HWO06/08, create a widget where the repaint function uses
the graphics context to draw an image

let w _draw =

{
repaint = (fun (gc:Gectx.t) ->
Gctx.draw line gc (0, 0) (100, 100);
Gctx.draw point gc (3,4)) ;
size = (fun (gc:Gctx.t) -> (200,200));
handle = (fun () -> ())
}

* In Swing, extend from class JComponent....

Fundamental class: JComponent

* Analogue to Widget.widget and Widget class

— (Terminology: widget == component)

* Subclasses override methods
— paintComponent (like repaint, displays the component)
— getPreferredSize (like minSize, calculates the size of the component)
— Events handled by subclasses

 Much more functionality available
— minimum/maximum size
— font
— foreground/background color
— borders
— what is visible
— many more...

Simple Drawing Component

public class DrawingCanvas extends JComponent {

public void paintComponent (Graphics gc) {

}

// get the size of the drawing panel
public Dimension getPreferredSize() {

}

super.paintComponent(gc);

// set the pen color to green
gc.setColor(Color.GREEN);

// draw a fractal tree
fractal (gc, 75, 100, 270, 15);

return new Dimension(150,150);

CIS 120

How to display this component?

JFrame

 Represents a top-level window
— Displayed directly by OS (looks different on Mac, PC, etc.)

* Contains JComponents

e Can be moved, resized, iconified, closed

public void run() {
JFrame frame = new JFrame("Tree");

// set the content of the window to be the drawing
frame.getContentPane().add(new DrawingCanvas());

// make sure the application exits when the frame closes
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

// resize the frame based on the size of the panel
frame.pack();

// show the frame
frame.setVisible(true);

Fractal Drawing Demo

CIS 120

User Interaction

CIS 120

Start Simple: Lightswitch Revisited

Task: Program an application that displays a button. When the
button is pressed, it toggles a “lightbulb” on and off.

Swing practicalities

Java library for GUI development
— javax.swing.*

Built on existing library: AWT

— java.awt.*

— If there are two versions of something, use Swing’s. (e.g.,
java.awt.Button vs. javax.swing.JButton)

* The “Jxxx” version is usually the one you want, rather than “xxx”.

Portable

— Communicates with OS's native window system

— Same Java program looks different when run on PC, Linux and Mac
Components as Containers

— Use JPanel to organize and position other components (analogous to
vpair, hpair)

OnOffDemo

The Lightswitch GUI program in Swing.

CIS 120

