Programming Languages
and Techniques
(C1S120)

Lecture 34
April 18, 2013

Swing Il: Layout & Designhing a GUI app

CIS 120

How is HW10 going so far?

1. not started

2. started reading

3. got anidea for what game to write
4. started coding

List<Integer> list = new LinkedList<Integer>(Q);
list.add(1);
list.add(2);
list.add(3);

Iterator<Integer> 1t = list.iterator();
while (it.hasNext()) {
int v = it.next();
if (it.next() > 1) {
System.out.print(v + " ");
¥

}

What is the result?

2 and 3 are printed

1 and 3 are printed

1 is printed, then NoSuchElementException occurs
2 is printed, then NoSuchElementException occurs
NullPointerException occurs

o Ul e e e

None of the above

LayoutManagers

Swing Programming Demo

CIS 120

CIS 120

What layout would you use for Paint?

1.

2
3.
4

FlowLayout
GridLayout
BorderLayout

Something else?

800

() point (®) Line [] Thick Lines | Quit |

Design Exercise

CIS 120

Java Paint

Java Paint

CIS 120

Design Recipe

CIS 120

Understand the problem
What are the relevant concepts and how do they relate?

Formalize the interface

How should the program interact with its environment? How
should different parts of the program interact with each
other?

Write test cases

How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

5. Revise / Refactor / Edit

Basic structure

Main class for the application (the MODEL)
Drawing area, i.e. Canvas (the VIEW)
Control panel (the CONTROLLER)

Model stores the state of the application
— Collection of shapes to draw
— Preview shape (if any...)
— The current color
— The current line thickness

View displays the state
— overrides paintComponent method and draws each shape in the list

Controller updates the state
— Radio buttons for selecting shape to draw
— Line thickness checkbox, undo and quit buttons

How should we represent shapes?

1. Using a class: public class Shape {
String name; // 1.e. "Point" or "Line"

int x; int y;
int thickness;

}

public enum Shape {

2. Using an enum: Point, Line, Ellipse
ks

3. Using an interface: public interface Shape { .. }
public class Point implements Shape { .. }

public class Line implements Shape { .. }

public class Ellipse implements Shape { .. }

4. Something else?

CIS 120

OCaml Version of Paint

type
|
|

let

shape =

Points of Gctx.color * int * point list
Line of Gctx.color * int * point * point
repaint (g:Gctx.t) : unit =

Datatypes define the
structure of information.

let draw_shape (s:shape) : unit =
begin match s with
| Points (c,t,ps) -> ..

| Line (c,t,pl,p2) -> ..
end in
Deque.iterate draw_shape paint.shapes;
begin match paint.preview with
| None -> ()
| Some d -> draw_shape d
end

Drawing operation is
defined externally to the
datatype and uses

case analysis to dispatch.

The “main” loop looks
very similar.

CIS 120

12

Java Version of Paint

public interface Shape { Interface describes what
public void draw(Graphics gc); shapes can do
hy
public class PointShape implements Shape { .. } Classes describe how

to draw themselves

public class LineShape implements Shape { .. }

private class Canvas extends JPanel {
public void paintComponent(Graphics gc) {
super.paintComponent(gc);
for (Shape s : shapes)
s.draw(gc);

if (preview != null)
Canvas uses dynamic

review.draw(gc);
g I dispatch to draw the shapes

}

CIS 120 13

Comparison with OCaml|

How does our treatment of shape drawing in the Java Paint
example compare with the OCaml GUI project?

Java:
— Interface Shape for drawable objects
— Classes implement that interface
— Canvas uses dynamic dispatch to draw the shapes
— Add more shapes by adding more implementations of "Shape"

OCaml
— Datatype specifies variants of drawable objects
— Canvas uses pattern matching to draw the shapes
— Add more shapes by adding more variants, and modifying draw

Datatypes vs. Objects

Datatypes

Focus on how the data is
stored

Easy to add new operations

Hard to add new variants

Best for: situations where

the structure of the data is
fixed (i.e. BSTs)

Objects

* Focus on what to do with
the data

* Easy to add new variants

 Hard to add new operations

e Best for: situations where
the interface with the data
is fixed (i.e. Shapes)

