Programming Languages
and Techniques
(C1S120)

Lecture 35
April 21, 2014

Swing lll: Paint demo,

Mouse Interaction

Announcements

e HW 10 has a HARD deadline

— You must submit by midnight, April 30t
— Demo your project to your TA during reading days

* TAs have advice for your game
— source control tutorial
— collisions
— difficulty guide

* Friday’s lecture is a BONUS lecture
— Not directly related to game project or Java libraries
— No clicker quizzes
— Fun!

Java Paint

Basic structure

Main class for the application (the MODEL)
Drawing area, i.e. Canvas (the VIEW)
Control panel (the CONTROLLER)

Model stores the state of the application
— Collection of shapes to draw
— Preview shape (if any...)
— The current color (will always be BLACK today)
— The current line thickness

View displays the state
— overrides paintComponent method and draws each shape in the list

Controller updates the state
— Radio buttons for selecting shape to draw
— Line thickness checkbox, undo and quit buttons

Dynamic Dispatch for Drawing

public interface Shape { Interface describes what
public void draw(Graphics gc); shapes can do
hy
public class PointShape implements Shape { .. } Classes describe how

to draw themselves

public class LineShape implements Shape { .. }

private class Canvas extends JPanel {
public void paintComponent(Graphics gc) {
super.paintComponent(gc);
for (Shape s : shapes)
s.draw(gc);

if (preview != null)
Canvas uses dynamic

review.draw(gc);
g I dispatch to draw the shapes

CIS120

public class Paint {

/** Preview shape for drag and drop */
private Shape preview = null;

/** Current drawing color */

private Color color = Color.BLACK;
/** Current drawing thickness */
private Stroke stroke = thickStroke;

/** Stroke for drawing shapes with thin lines */
public final static Stroke thinStroke = new BasicStroke(1l);
/*¥* Stroke for drawing shapes with thick lines */
public final static Stroke thickStroke = new BasicStroke(3);

/** The shapes that will be drawn on the canvas. */
private ??? shapes = new ?777();

What Collection class should we use to store the shapes ?
1. TreeSet<Shape>

TreeMap<Shape>

LinkedList<Shape>

lterable<Shape>

None of the above

sl

The Controller

updates the state of the model

Canvas
(canvas)

JPanel [Opoint (& Line W Thicktines | [Quit |

(modeToolk

JRadioButton (thick)
(point,line)

Demo: Controller Layout

Paint.java

Mouse Interaction

* How do we specify what shapes to draw on the canvas?

public enum Mode {
PointMode, LineStartMode, L1ineEndMode

¥

private Mode mode = Mode. PointMode;

Interaction

Mouse Click (in the canvas)
[add new point]

Line Point
Button Button Mouse Release Mouse Dra
press press [add new line, s

[update preview]

set preview to null]

LineStart

\Yi[eYe[=

Mouse Press
[store point, set preview]

CIS120

Two interfaces for mouse listeners

interface MouselListener extends EventlListener {
public void mouseClicked(MouseEvent e);
public void mouseEntered(MouseEvent e);
public void mouseExited(MouseEvent e);
public void mousePressed(MouseEvent e);
public void mouseReleased(MouseEvent e);

interface MouseMotionlListener extends EventlListener {
public void mouseDragged(MouseEvent e);

public void mouseMoved(MouseEvent e);

}

CIS120

Lots of boilerplate

There are seven methods in the two interfaces.

We only want to do something interesting for three of them.

Need "trivial" implementations of the other four to
implement the interface...

public void mouseMoved(MouseEvent e) { return; }
public void mouseClicked(MouseEvent e) { return; }
public void mouseEntered(MouseEvent e) { return; }
public void mouseExited(MouseEvent e) { return; }

* Solution: MouseAdapter class...

Adapter classes:

Swing provides a collection of abstract event adapter classes

These adapter classes implement listener interfaces with
empty, do-nothing methods

To implement a listener class, we extend an adapter class and
override just the methods we need

private class Mouse extends MouseAdapter {

¥

public void mousePressed(MouseEvent e) { .. }
public void mouseReleased(MouseEvent e) { .. }
public void mouseDragged(MouseEvent e) { .. }

