Programming Languages
and Techniques
(C1S120)

Lecture 36
April 23, 2014

Overriding and Equality

Announcements

HW 10 has a HARD deadline

— You must submit by midnight, April 30t
— Demo your project to your TA during reading days

Friday’s lecture is a BONUS lecture

— Not directly related to game project or Java libraries
— No clicker quizzes

— Fun!

Senior project demos this morning. Check them out after
class!

Clicker quiz

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = vy; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in main..
List<Point> 1 = new LinkedList<Point>();
1.add(new Point(1,2));

System.out.println(l.contains(Cnew Point(1,2)));

What gets printed to the console?

1. true
2. false

Method Overriding

A Subclass can Override its Parent

public class C {
public void printName() { System.out.println(“I'm a C”); }

}

public class D extends C {
public void printName() { System.out.println(“I'm a D”); }

}

C c¢c = new D();
c.printName(); // what gets printed?

What gets printed to the console?

1. 'maC

2. 'mabD

3. NullPointerException

4. NoSuchMethodException

A Subclass can Override its Parent

public class C {
public void printName() { System.out.println(“I'm a C”); }

}

public class D extends C {
public void printName() { System.out.println(“I'm a D”); }

}

C c¢c = new D();
c.printName(); // what gets printed?

Our ASM model for dynamic dispatch already explains what will happen
when we run this code.

Useful for changing the default behavior of classes.

But... can be confusing and difficult to reason about if not used carefully.

Overriding Example

Workspace

C c = new D();

c.printName() ;>

Stack Heap

Class Table

Object
String toString(){..

boolean equals..

C

extends

C() {1}

void printName(){..}

D

extends

D() { ..}

void printName(){..}

Overriding Example

Workspace

Stack Heap

c.printName();

- [=—EN

Class Table

Object
String toString(){..

boolean equals..

C

extends

co)y {1}

void printName(){..}

D
extends
D() { ..}

void printName(){..}

Overriding Example

Workspace

Stack Heap

.printName();

Class Table

Object

String toString(){..

boolean equals..

C

extends

co)y {1}

void printName(){..}

D

extends

D() { ..}

printName () {..}

Overriding Example

Workspace

Stack Heap

System.out.
println(“I'm a D”);

Class Table

Object
String toString(){..

boolean equals..

C
extends
c() { }

void printName(){..}

D

extends

D() { ..}

void printName(){..}

Difficulty with Overriding

class C {

public void printName() {
System.out.printin("I'm a " + getName());

}

public String getName() {
return "C";

}
}
class E extends C { What gets printed to the console?
public String getName() { Lo nelc
return "E"; 2. 'makt
1 3. 'mankE
1 4. NullPointerException
// 1n main

C ¢ = new EQ;
c.printName();

Difficulty with Overriding

The C class might be
class C { in another package, or a
library...
public void printName() { *”””” Y
System.out.printin("I'm a " + getName()); Whoever wrote D might
} not be aware of the
_ . implications of
public String getName() { changing getName.
return "C";
¥
}

Overriding the method causes the
behavior of printName to

public String getName(Q) { change!
return "E";

class E extends C {

— Overriding can break invariants/
} abstractions relied upon by the
¥ superclass.

// 1n main
C c = new EQ;
c.printName();

When To Override?

 Only override methods when the parent class is designed specifically to
support such modifications:

— If the library designer specifically describes the behavioral contract that the
parent methods assume about overridden methods (e.g. equals,
paintComponent)

— If you’re writing the code for both the parent and child class (and will maintain
control of both parts as the software evolves) it might be OK to overrride.

— Either way: document the design
— Use the @0Override annotation to mark intentional overriding

* Look for other means of achieving the desired outcome:
— Use composition & delegation (i.e. wrapper objects) rather than overriding

How to prevent overriding

By default, methods can be overridden in subclasses.
The f£inal modifier changes that.

Final methods cannot be overridden in subclasses

— Prevents subclasses from changing the “behavioral contract” between
methods by overriding

— static final methods cannot be hidden

Similar, but not the same as final fields and local variables:
— Act like the immutable name bindings in OCaml

— Must be initialized (either by a static initializer or in the constructor) and
cannot thereafter be modified.

— static final fields are useful for defining constants (e.g. Math.PI)

Case study: Equality

Motivating example

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = vy; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in main..
List<Point> 1 = new LinkedList<Point>();
1.add(new Point(1,2));

System.out.println(l.contains(Cnew Point(1,2)));

We must override equals in the Point class to get the desired behavior.

When to override equals

In classes that represent immutable values
— String already overrides equals
— Our Point class is a good candidate

When there is a “logical” notion of equality

— The collections library overrides equality for Sets
(e.g. two sets are equal if and only if they contain equal elements)

Whenever instances of a class might need to serve as
elements of a set or as keys in a map

— The collections library uses equals internally to define set
membership and key lookup

— (This is the problem with the example code)

When not to override equals

* When each instance of a class is inherently unique

— Often the case for mutable objects (since its state might change, the
only sensible notion of equality is identity)

— Classes that represent “active” entities rather than data (e.g. threads,
gui components, etc.)

* When a superclass already overrides equals and provides the

correct functionality.
— Usually the case when a subclass adds only new methods, not fields

How to override equals

*See the very nicely written article “How to write an Equality Method in Java” by Oderski, Spoon, and
Venners (June 1, 2009) at http://www.artima.com/lejava/articles/equality.html

The contract for equals

 The equals method implements an equivalence relation on non-null
objects.
* ltisreflexive:

— for any non-null reference value x, x.equals(x) should return true

* |tis symmetric:

— for any non-null reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true

* |tis transitive:
— for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
* |tis consistent:

— for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information
used in equals comparisons on the object is modified

For any non-null reference x, x.equals(null) should return false.

Directly from: http://docs.oracle.com/javase/6/docs/api/java/lang/Object.html#equals(java.lang.Object)

First attempt

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {this.x = x; this.y = y;}
public int getX() { return x; }
public int getY() { return y; }
public boolean equals(Point that) {
return (this.getX() == that.getX() &&
this.getY() == that.getY());

Gocha: overloading, vs. overriding

public class Point {

// overloaded, not overridden
public boolean equals(Point that) {
return (this.getX() == that.getX() &&
this.getY() == that.getY());

¥
¥
Point pl = new Point(1,2);
Point p2 = new Point(1,2);
Object o = p2;

System.out.println(pl.equals(o));
// prints false!
System.out.println(pl.equals(p2));
// prints true!

The type of equals as declared in Object is:
public boolean equals(Object o)
The implementation above takes a Point not an Object!

Overriding equals, take two

Properly overridden equals

public class Point {

@Override

public boolean equals(Object o) {
1f (0 == null) { return false; }
// what do we do here???

e Start with the null check. Why can we immediately return false?

e Usethe @Override annotation when you intend to override a method
so that the compiler can warn you about accidental overloading.

e Now what? How do we know whether the o is even a Point?
— We need a way to check the dynamic type of an object.

instanceof

e The instanceof operator tests the dynamic type of any object

Point p = new Point(1,2);
Object o0l = p;
Object 02 = "hello";

System.out.println(p instanceof Point);
// prints true
System.out.println(ol instanceof Point);
// prints true
System.out.println(o2 instanceof Point);
// prints false
System.out.println(p instanceof Object);
// prints true
System.out.println(null instanceof Object);
// prints false

What gets printed? (1=true, 2=false)

* Inthe case of equals, instanceof is appropriate because the method
behavior depends on the dynamic types of two objects: ol.equals(o2)

* But...use instanceof judiciously — usually dynamic dispatch is better.

Type Casts

 We can test whether o is a Point using instanceof

@Override

public boolean equals(Object o) {
1f (0 == null) { return false; }
1f (!(o instanceof Point)) { return false; }
// 0 1s a point - how do we treat i1t as such?

* Useatypecast: (Point) o
— At compile time: the expression (Point) o hastype Point.

— At runtime: check whether the dynamic type of o is a subtype of Point, if so
evaluate to o, otherwise raise a ClassCastException

— As with instanceof, use casts judiciously —i.e. almost never

Refining the equals implementation

@Override
public boolean equals(Object o) {
1f (0 == null) { return false; }
1f (!(o instanceof Point)) { return false; }

Point that = (Point) o;

1f (x !'= that.x) { retu:;\FaT§E7\}\\\\\\ This cast is
'|.'F (y = that.y) { return 'Fa-l_se; } guaranteedto
return true; succeed.

One more addition

@Override when the argument
public boolean equals(Object o) {‘e/////////- the argu

An optimization for

1f (this == o) { return true; }

1f (0 == null) { return false; }

1f (!(o instanceof Point)) { return false; }
Point that = (Point) o;

if (x != that.x) { return false; }

1f (y !'= that.y) { return false; }

return true;

Now the example code from the slide 3 will behave as expected.
But... are we done? Does this implementation satisfy the contract?

