Programming Languages
and Techniques
(C1S120)

Lecture 37
April 28, 2014

TreeSet and HashSet

Announcements

 Game project due Wednesday at midnight (HARD deadline)

* Check your grades online, should be up-to-date

 Final Exam

Wednesday, May 7" 9-11 AM

DRLB Al, Last name A-N
DRLB A8, Last name P-Z

Old exams posted on the course website for review
OH will continue until the exam

Review session: Saturday, May 39 6-9PM in Levine 101
Mock exam: Sunday, May 4t 6-9PM in Levine 101

How is HW10 going so far?

1. not started

2. gotanidea, but still working out the details
3. bugs, bugs, bugs everywhere

4. done and submitted!

public class Game {
private boolean Xx;

public Game() {
boolean x = true;
¥

public boolean foo() {
return x;

¥

public static void main(String[] args) {
System.out.printin(new Game().foo());
ks

What gets printed to the console?

1. true
2. false
3. NullPointerException

Collections & User-defined classes

From Wednesday

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = vy; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in main..
List<Point> 1 = new LinkedList<Point>();
1.add(new Point(1,2));

System.out.println(l.contains(Cnew Point(1,2)));

What gets printed to the console?

1. true
2. false

TreeSet

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = vy; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in main..

Set<Point> 1 = new TreeSet<Point>();

1.add(new Point(1,2));
System.out.println(l.contains(new Point(1,2)));

What gets printed to the console?

1. true

2. false

3. Exception in thread "main" java.lang.ClassCastException: Point
cannot be cast to java.lang.Comparable

Searchin a BST: (lookup t 8)

Lecture 6, slide 15

CIS120

8>5

Comparison Operators

e OCaml’s comparison operators (such as < and >) automatically
work for user-defined types

type point = { x:int; y:int }

;5 print_string (if {x=1;y=2} < {x=2;y=1}
then "true" else "false")

What gets printed to the console?

1. true
2. false
3. |l have noidea

e Java requires classes to explicitly implement the
“Comparable<T>" interface

Comparable<T>

e Classes must implement Comparable<T> to be used with
TreeSet

interface Comparable<T> {
public int compareTo(T 0);
Iy

* Returns:
— a negative number when o is less than this object

— zero when o is equal to this object
— a positive number when o is greater than this object

Implementing compareTo

public class Point implements Comparable<Point> {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = y; }

@0verride public int compareTo(Point o) {
final int BEFORE = -1;
final int EQUAL = 0;

final int AFTER = 1; // optimization

if (this == 0) return EQUAL;

1f (this.x < 0.x) return BEFORE;

if (this.x > 0.x) return AFTER;

What is the result of
if (this.y < o.y) return BEFORE; Point(1,2).compareTo(null)?

i1f (this.y > o.y) return AFTER;]

1

2. 0

3. 1

4. NullPointerException

return EQUAL;

Contract for compareTo

Anticommutivity: x.compareTo(y) isthe opposite of
y .compareTo(x) (orthey are both zero)

Exception symmetry: x .compareTo (y) throws the same
exceptions as y.compareTo(X)

Transitivity: if x.compareTo(y) > 0 and

y.compareTo(z) > 0thenx.compareTo(z) > 0
(and same for <)

Consistency: if x.compareTo(y) == 0 then
x .compareTo(z) returns the same result as
y .compareTo(z)

Consistency with equals (strongly recommended):
X.compareTo(y) == ifand only if x.equals(y)

HashSet & HashMap

Clicker quiz

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = vy; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in main..
Set<Point> 1 = new HashSet<Point>();
1.add(new Point(1,2));

System.out.println(l.contains(Cnew Point(1,2)));

What gets printed to the console?

1. true
2. false
3. |l have noidea

Hash Maps: The Big Idea

Combine:

* the advantage of arrays:

— efficient random access to its elements

* with the advantage of a map datastructure

— arbitrary keys (not just integers!)

How?

* Create an index into an array by hashing the data in the key to
turn itinto an int

— The hashCode method of the Object class does this

* Resize the array as the number of stored elements grows

Hash Maps, Pictorially

Keys hashCode() % array size Array Values

“lohn Doe” 000 null

> 001 . > CSCl
“Jimmy Bob” 002 null

> 003 . > CBE
“Jane Smith” |

» 253 ¢ * DMD
p p g . ” WUNG
Joan Jones

255 null

A schematic HashMap taking Strings (student names) to Undergraduate Majors.
Here, “John Doe” .hashCode () returns an integer n, its hash, such that n mod
256 is 254.

Hash Collisions

Uh Oh: Indices derived via hashing may not be unique!
“Jane Smith” .hashCode() % 256 = 253
“Joe Schmoe” .hashCode() % 256 = 253

Good hashCode functions make it unlikely that two keys will
produce the same hash

But, it can happen that two keys do produce the same index —
that is, their hashes collide

Bucketing and Collisions

e Using an array of buckets
— Each bucket stores the mappings for keys that have the same hash.

— Each bucket is itself a map from keys to values (implemented by a
linked list).

— The buckets can’t use hashing to index the values — instead they use
key equality (via the key’s equals method)

* To lookup a key in the Hash Map:
— First, find the right bucket by indexing the array through the key’s hash

— Second, search through the bucket to find the value associated with
the key

* Not the only solution to the collision problem

Bucketing

Keys hashCode() % array size Array Buckets of Bindings

002 null

“Joan Jones” CBE

“Jimmy Bob”

“Jimmy Bob” CScCl
“John Doe” 000 null f immy
001 @

> 003 —

“Jane Smith” DMD

“Jane Smith” 1
253 *~— “Joe Shmoe” | MATH

> 254 ~—
“Joan Jones” 5 . l
55 e “John Doe” WUNG

“Joe Schmoe”

Here, “Jane Smith”.hashCode() and “Joe Schmoe”.hashCode() happen to collide. The
bucket at the corresponding index of the Hash Map array stores the map data.

Hash Map Performance

Hashtables are efficient implementations of Maps and Sets

— There are many different strategies for dealing with hash collisions with
various time/space tradeoffs

— Real implementations also dynamically resize of the array (which might require
re-computing the bucket contents)

If the hashCode function gives a good (close to uniform) distribution of
hashes the buckets are expected to be small (only one or two elements)

Whenever you override equals you must also override hashCode in a
consistent way:

— whenever ol.equals(02)== true you mustensure that

ol.hashCode() == o2.hashCode() Why? Because comparing
— note: the converse does not have to hold: hashes is supposed to be
a quick approximation for

equality.

Example for Point

public class Point {
@0Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + x;
result = prime * result + y;
return result;

Examples:

— (new Point(1,2)).hashCode() vyields 994
— (new Point(2,1)).hashCode() yields 1024

Note that equal points have the same hashCode
Why 31? Prime chosen to create more uniform distribution

Note: eclipse can generate this code

Computing Hashes

 What is a good recipe for computing hash values for your own classes?

— intuition: “smear” the data throughout all the bits of the resulting
integer

1. Start with some constant, arbitrary, non-zero int in result.

2. For each significant field f of the class (i.e. each field taken into account
when computing equals), compute a “sub” hash code c for the field:

— Forbooleanfields: (£ 2 1 : 0)

— For byte, char, int, short: (int) £

— Forlong: (int) (£ © (£ >>> 32))

— For references: 0 if the reference is null, otherwise use the hashCode () of
the field.

3. Accumulate those subhashes into the result by doing (for each field’s c):
result = prime * result + c;

4. return result

