
CIS 120 Final Exam May 7, 2014

Name (printed):

Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

1 /8

2 /10

3 /15

4 /14

5 /16

6 /10

7 /14

8 /13

9 /20

Total /120

• Do not begin the exam until you are asked to do so.

• You have 120 minutes to complete the exam.

• There are 120 total points.

• There are 16 pages in this exam, plus an Appendix.

1

1. Design Process (8 points)

List the four steps of the “design process” (or “recipe”) that we used throughout the semester.

a.

b.

c.

d.

2

2. True or False (10 points)

a. T F In OCaml, if x is a variable of any type, Some x == Some x will always return true.

b. T F In OCaml, data structures such as records and datatypes are immutable by default.

c. T F Binary search trees can only be implemented in OCaml.

d. T F Every mutable reference in OCaml could be null.

e. T F In Java, a static method dispatch C.m() implicitly pushes the this reference onto the
stack

f. T F In Java, if an exception is thrown but not caught, it immediately terminates the pro-
gram.

g. T F In Java, any method that could throw a NullPointerException must include the
clause throws NullPointerException in the method header.

h. T F In the Java ASM, the dynamic class of an object is the name of the class that was used
to create it.

i. T F In the Java ASM, references can point to objects stored in the heap or on the stack.

j. T F Two references are called aliases if they point to the same location in the heap.

3

3. Binary Search Trees (15 points)

Recall the type definitions for binary trees from Homework 3:
type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

Also recall that binary search trees (BST) are trees with an additional invariant (which hopefully
you remember), and recall the insert function for BSTs:

let rec insert (x:’a) (t:’a tree) : ’a tree =
begin match t with
| Empty -> Node(Empty,x,Empty)
| Node(lt,y,rt) ->

if x = y
then t
else if x < y
then Node(insert x lt,y,rt)
else Node(lt,y, insert x rt)

end

Circle the tree that corresponds to ans after the execution of each code snippet. Also circle YES if
ans satisfies the BST invariant and NO otherwise.

a. let t : tree = Node(Empty, 2, Empty)
let ans : tree = insert 3 t

2 3 2 3
\ / / \
3 2 3 2

YES NO

b. let t : tree = Node(Empty, 4, Node(Empty, 4, Empty))
let ans : tree = insert 5 t

4 5 4 4
\ / \ \
5 4 4 5

\ /
5 4

YES NO

4

c. let t : tree = Node(Empty, 2, Node (Empty, 3, Empty))
let ans : tree = insert 3 t

2 3 2 2
\ / \ \ \
3 2 3 3 3

\ /
3 3

YES NO

d. let t : tree = Node(Node(Empty, 2, Empty), 5, Node(Empty, 7, Empty))
let ans : tree = insert 4 (insert 3 t)

5 5 2 5
/ \ / \ \ / \
3 5 2 7 3 2 7
/ \ \ \ \
2 4 3 4 4

\ \ /
4 5 3

\
7

YES NO

e. let t : tree = Node(Node(Empty, 7, Empty), 5, Node(Empty, 8, Empty))
let ans : tree = insert 7 (insert 6 t)

5 5 5 5
/ \ / \ \ / \
7 8 7 8 6 6 8
/ / / \ /
6 7 6 7 7

\ \
7 8

YES NO

5

4. Immutable Sets and Maps (14 points)

Consider the following OCaml modules, Set and Map, that are described by the module types SET
and MAP shown in Appendix A. Although the implementations of these modules is not shown, you
may assume that they implement immutable sets and finite maps as in Homework 3.
module Set : SET = struct ... end
module Map : MAP = struct ... end

Circle the value of the following OCaml expressions, or Ill-typed if the expression would not type
check.

a. let s1 = Set.add "Happy" [] in
Set.size s1

0 1 2 true false Ill-typed

b. let s1 = Set.add "Happy" Set.empty in
let s2 = Set.add "Birthday" s1 in
Set.member "Birthday" s1

0 1 2 true false Ill-typed

c. let s1 = Set.add "Happy" Set.empty in
let s2 = Set.add "Birthday" s1 in
Set.member "Happy" s2

0 1 2 true false Ill-typed

d. let s1 = Set.add "Happy" Set.empty in
let s2 = Set.add true s1 in
Set.size s2

0 1 2 true false Ill-typed

e. let s1 = Set.add "Happy" Set.empty in
let s2 = Set.add "Happy" s1 in
Set.size s2

0 1 2 true false Ill-typed

f. let s1 = Set.add "Birthday" Set.empty in
let m1 = Map.add "Happy" s1 Map.empty in
let m2 = Map.add "Happy" Set.empty m1 in
Set.size (Map.find "Happy" m2)

0 1 2 true false Ill-typed

g. let s1 = Set.add "Birthday" Set.empty in
let m1 = Map.add "Happy" s1 Map.empty in
let s2 = Set.add "Party" s1 in
let m2 = Map.add "It’s my" s2 m1 in
Set.size (Map.find "Happy" m2)

0 1 2 true false Ill-typed

6

5. Program Design (Arrays) (16 points)

Implement a static method called trimArray that, when given an int n and an int array x, returns
a new array with the same contents as x except for all occurrences of n at the beginning of the
array.

For example, trimArray(1, new int[] {1,1,2}) should yield a new array just containing a
single element, 2, and trimArray (1, new int[] {2,1,2,1}) should return an identical array
to the input, because there are no 1s at the beginning of the array.

If the input array is null, this method should return null. In particular, it should never throw a
NullPointerException.

7

6. Types (10 points)

Consider the classes and interfaces Iterable, Collection, List, Iterator, ArrayList and
LinkedList from the Java Collections Framework. (More information about these interfaces and
classes is shown in Appendix B.)

Write down a type for each of the following Java variable definitions. Due to subtyping, there may
be more than one type that would work—you should put the most specific type permissible in
that case. (For example, if C implements I then you should put C instead of I). Write ill-typed
if the compiler would flag an error anywhere in the code snippet.

Hint: read through the Appendix carefully. Even though you may have used these methods before,
you may not have given much thought to their types.

The first two have been done for you as a sample and are used in the remaining definitions.

_______ArrayList<String>__________ x = new ArrayList<String>();

____ArrayList<List<String>>_______ y = new ArrayList<List<String>>();

a. _______________________ a = x.iterator();

b. _______________________ b = x.iterator().next();

c. _______________________ c = x.next();

d. _______________________ d = x.subList(1,2);

e. _______________________ e = x.get(2);

f. _______________________ f = x.contains(x);

g. _______________________ g = y.get(0);

h. _______________________ h = y.add(x);

i. _______________________ i = x.add(x);

j. _______________________ j = x.contains("Whew!");

8

7. Java ASM (14 points)

Consider the classes GameCourt and GameObj, shown in Appendix C. These classes are loosely
based on the Mushroom of Doom.

a. Draw the stack and the heap of the Java Abstract Stack Machine after the following code has
executed on the workspace:
GameCourt court = new GameCourt();

Stack Heap

9

b. Now suppose that the following code is placed on the workspace, picking up where the above
computation left off.
court.tick();

What are the values of the following Java expressions after this code executes?

court.playing

court.square.x

court.circle.x

10

8. Reactive programming and Swing (13 points)

A JSlider is a Swing component that allows users to set a percentage by moving a bar. For
example, the window on the left displays a slider that starts with an initial value of 50 percent.
The slider can be used to select values in the range 0 to 100.

When the user drags the slider, it changes the value of the slider to a new percentage, as shown in
the window on the right. In each window, to the right of each slider is a Jlabel that displays the
current value of the slider. The label updates whenever the slider is changed.

This question asks you to complete the implementation of the simple application described above.

For reference, documentation for various components of the Swing library (including JSlider

and JLabel) appears in Appendix D. Recall that you can convert an int to a string using the static
method Integer.toString(int x).

Hint: you will need to define an object that implements the ChangeListener interface. You may
do so with either a separate class or an anonymous inner class.

Hint: all of the information you need to complete this problem is contained in the Appendix. In
particular, you do not need to implement the MouseListener interface.

(See next page.)

11

public class Main {
public static void main(String[] args) {

SwingUtilities.invokeLater(new Runnable() {

@Override
public void run() {

JFrame frame = new JFrame("Slider");
final JPanel panel = new JPanel();
frame.setContentPane(panel);

// Add any necessary code here . You may also define any
// helper classes (on the next page) if you wish.

frame.pack();
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
});

}
}

12

(More space for question 8, if necessary).

13

9. Object encodings and Collections (20 points)

Recall that in HW 06, we defined a GUI library for representing widgets, and that in HW 08, we
translated this library to Java. In particular, we represented OCaml values of type:
type widget = {
repaint: Gctx.gctx -> unit;
handle: Gctx.gctx -> Gctx.event -> unit;
size: Gctx.gctx -> Gctx.dimension

}

with Java classes that implement the following interface:
public interface Widget {

public void repaint (Gctx gc);
public void handle (Gctx gc, Event e);
public Dimension minSize();

}

Because we had not covered Java collections at that point in the semester, HW 08 simplified the
treatment of Notifier widgets. In that assignment, notifiers stored at most one event listener.
However, in the OCaml version (shown in Appendix E), notifier widgets are more flexible; they
store a list of event listeners. In that case, when an event occurs, the listeners processes the event
in the order that they were added—the first listener to “finish” the event terminates the iteration.
If none of the listeners finishes the event, then, and only then, is the inner widget notified of the
event.

Your job is to implement a Java Notifier widget with this functionality, by translating the OCaml
“object” shown in the appendix to Java classes and interfaces. Each method of your new Notifier

class should do the “same thing” as the corresponding part of the OCaml version, with two differ-
ence:

• As in HW 08, the minSize method takes no arguments. However, like size in notifier it
should just delegate to the inner widget.

• Instead of using OCaml lists, you should use classes from the Java Collections framework
(see Appendix B).

To get started, consider the interface below, which is the analogue to the OCaml event_listener
type. For brevity on the exam, we call it EL, short for EventListener.
/∗∗ A listener processes events ; it returns true if the event has been
completely taken care of by the listener , and false if the event should
be propagated to other listeners along a widget’s event handlers . ∗/
interface EL {

public boolean listen(Gctx gc, Event e);
}

14

Your first step is to complete the NotifierController interface corresponding to the
notifier_controller type in the OCaml version.

/∗∗ A NotifierController is associated with a notifier widget .
It allows the program to add event listeners to the notifier ∗/

interface NotifierController {

}

Next, below and on the next page, complete the Notifier class so that it implements the required
interfaces.

Note: For simplicity on the exam, you may assume that all arguments to methods are non-null.

public class Notifier implements NotifierController, Widget {

// instance variables

// Constructor

// Required method for NotifierController interface

15

(Implementation of Notifier class continued)
// Required methods for Widget interface

public Dimension minSize() {

}

public void repaint(Gctx gc) {

}

public void handle(Gctx gc, Event e) {

}
}

16

A Sets and Maps in OCaml

module type SET = sig
type ’a set
(∗ The type of (generic) sets ∗)

val empty : ’a set
(∗ The empty set ∗)

val add : ’a -> ’a set -> ’a set
(∗ add x s returns a set containing all elements of s , plus x . ∗)
(∗ If x was already in s , s is returned unchanged. ∗)

val member : ’a -> ’a set -> bool
(∗ member x s tests whether x belongs to the set s . ∗)

val size : ’a set -> int
(∗ size s returns the number of elements contained in the set s ∗)

end

module type MAP = sig
type (’k,’v) map
(∗ The type of maps from key ’k to values ’v ∗)

val empty : (’k,’v) map
(∗ The empty map ∗)

val add : ’k -> ’v -> (’k,’v) map -> (’k,’v) map
(∗ add x y m returns a map containing the same bindings as m, ∗)
(∗ plus a binding of x to y . If x was already bound in m, its ∗)
(∗ previous binding disappears . ∗)

val mem : ’k -> (’k,’v) map -> bool
(∗ mem x m returns true if m contains a binding for x , and ∗)
(∗ false otherwise . ∗)

val find : ’k -> (’k,’v) map -> ’v
(∗ find x m returns the current binding of x in m, or fails ∗)
(∗ if no such binding exists . ∗)

end

17

B Excerpt from the Collections Framework

interface Iterator<E> {
public boolean hasNext();
// Returns true if the iteration has more elements .
public E next();
// Returns the next element in the iteration .
public void remove();
// Removes from the underlying collection the last element
// returned by this iterator

}

interface Iterable<E> {
public Iterator<E> iterator();
// Returns an iterator over a set of elements of type E.

}

interface Collection<E> extends Iterable<E> {
public boolean add(E o);
// Ensures that this collection contains the specified element
// Returns true if this collection changed as a result of the call .
// (Returns false if this collection does not permit duplicates
// and already contains the specified element .)
public boolean contains(Object o);
// Returns true if this collection contains the specified element .

}

interface List<E> extends Collection<E> {
public E get(int i);
// Returns the element at the specified position in this list
public List<E> subList(int fromIndex, int toIndex);
// Returns a view of the portion of this list between the
// specified fromIndex, inclusive , and toIndex , exclusive .

}

class ArrayList<E> implements List<E> {
public ArrayList();
// Constructs an empty list with an initial capacity of ten

// ... methods specified by interface
}

class LinkedList<E> implements List<E> {
public LinkedList();
// Constructs an empty list

// ... methods specified by interface
}

18

C GameCourt and GameObj classes

class GameCourt {
public Square square;
public Circle circle;
public boolean playing;

public GameCourt() {
square = new Square(this);
circle = new Circle();
playing = true;

}

public void tick() {
circle.move();
square.move();

}
}
class GameObj {

public int v; // velocity of the object
public int x; // position of the object

public GameObj(int v, int x) {
this.v = v;
this.x = x;

}
public void move(){

x = x + v;
}

}
class Square extends GameObj {

GameCourt court;
public Square(GameCourt c) {

super(0,0);
court = c;

}
public void move() {

super.move();
if (x == court.circle.x) {
court.playing = false;

}
}

}
class Circle extends GameObj {

public Circle() {
super(-2,2);

}

}

19

D Swing class documentation

class JSlider extends JComponent {
public JSlider() { ... }
// Creates a horizontal slider with the range 0 to 100 and
// an initial value of 50
public void addChangeListener(ChangeListener l) { ... }
// Adds a ChangeListener to the slider
public int getValue() { ... }
// Returns the slider ’s current value
public void setValue(int n)
// Sets the slider ’s current value to n

}

public interface ChangeListener {
public void stateChanged(ChangeEvent e);
// Invoked when the target of the listener has changed its state .

}

public class ChangeEvent {
public Object getSource() { ... }
// The object on which the Event initially occurred .

}

public class JLabel extends JComponent {
public JLabel() { ... }
// Creates a JLabel instance with an empty string for the title .
public JLabel(String text) { ... }
// Creates a JLabel instance with the specified text .

public String getText() { ... }
// Returns the text string that the label displays
public void setText(String text) { ... }
// Defines the single line of text this component will display .

}

public class JPanel extends JComponent {
public JPanel() { ... }
// Creates a new JPanel with a flow layout .

public void add(JComponent comp) { ... }
// Appends the specified component to the end of this container .

}

20

E Notifiers

type event_listener_result =
| EventFinished
| EventNotDone

(∗∗ A listener processes events ; it returns EventFinished if the event
has been completely taken care of by the listener , and EventNotDone
if the event should be propagated to other listeners along a widget’s
event handlers . ∗)

type event_listener = Gctx.gctx -> Gctx.event -> event_listener_result

(∗∗ A notifier controller is associated with a notifier widget .
It allows the program to add event listeners to the notifier .

∗)
type notifier_controller = {
add_event_listener: event_listener -> unit

}

(∗∗ A notifier widget is a widget ”wrapper” that doesn’ t take up any
extra screen space −− it extends an existing widget with the
ability to react to events . It maintains a list of of ” listeners ”
that eavesdrop on the events propagated through the notifier
widget .

When an event comes in to the notifier , it is passed to each
event listener in turn until one of them declares the event

to be ” finished ”.
∗)
let notifier (w: widget) : widget * notifier_controller =
let listeners = { contents = [] } in
{ repaint = w.repaint;
handle =
(fun (g:Gctx.gctx) (e: Gctx.event) ->
let rec loop (l: event_listener list) : unit =
begin match l with
| [] -> w.handle g e
| h::t -> begin match h g e with

| EventFinished -> ()
| EventNotDone -> loop t

end
end in

loop listeners.contents;
size = w.size

},
{ add_event_listener =

fun (newl:event_listener) ->
listeners.contents <- listeners.contents @ [newl]

}

21

