
CIS 120 Midterm I October 4, 2013

SOLUTIONS
1. List Processing (20 points)

For each of the following programs, write the value computed for r:

a. let x : int = 42
let f (y : int) : int = y + x
let x : int = 120

let r : int = f 0

42

b. let rec f (l : ’a list) : (’a list * ’a list) =
begin match l with
| [] -> ([], [])
| [x] -> (l , [])
| u::v::w ->

let (y,z) : (’a list * ’a list) = f w in
(u::y, v::z)

end

let r : (’a list * ’a list) = f [1;2;3;4;5]

([1;3;5],[2;4])

c. let rec f (x : (’a -> ’b) list) (y : ’a) : ’b list =
begin match x with
| h::t -> h y :: f t y
| _ -> []
end

let r : int list = f [(fun x -> - x); (fun x -> x * (x + 1))] 6

[-6; 42]

d. type foo = {mutable bar : int}
let f (x : foo) (y : foo) : int * int * int =
let z = x in
x.bar <- y.bar + 1;
(x.bar, y.bar, z.bar)

let r : int * int * int = f {bar = 0} {bar = 0}

(1,0,1)

Grading scheme, each answer worth five points:

1

• -1 for syntax errors
• -2 for minor conceptual mistake
• -3 for severe conceptual mistake
• -2 for multiple ambiguous answers with only correct
• -2 for omitting 5 in b
• -1 for adding an extra element in b
• -3 if the tuple is in reverse order in b
• -2 if no negation in c
• -3 for the second element of the list in c
• x.bar is 1 point, y.bar and z.bar are 2

2

2. Types (10 points)
For each OCaml value or function definition below, fill in the blank where the type annotation
could go or write “ill typed” if there is a type error. If an expression can have multiple types, give
the most generic one. Recall that the @ operator appends two lists together in OCaml. We have
done the first one for you. Consider the definitions to be below the following code:
module type MAP = sig
type (’a * ’b) map
val fromList : (’a * ’b) list -> (’a * ’b) map

end

module LMap : MAP = struct
type (’a * ’b) map = (’a * ’b) list
let fromList (l : (’a * ’b) list) = l

end

open LMap;;

let x : ___________ int list _____________________ = [2 + 2]

let a : ___________ill typed______________________ = 42 ˆ " 42"

let b : ____________int list list ________________ = [42] :: [[]]

let c : ___________ill typed______________________ = [42] :: [42]

let d : ________(string * int) list_______________ = [("cis", 120)]

let e : _________(int * int) map__________________ = fromList [(120, 42)]

let f : _________(string * int) set_______________ =
fromList ([("benjamin",42)] @ [("pierce", 120)])

let g : __________ill typed_______________________ =
fromList [("benjamin", "cis"); ("pierce", 120)]

let h : __(int * (string * int) map) map__________ =
fromList [(120,fromList [("benjamin", 42)])]

let i : _________(int -> ’a) -> ’a________________ = (fun f -> f 42)

let j : _________ill typed________________________ = (fun x -> x + "foo")

Grading scheme: 1 points per answer: 0 if wrong, 1 if right. Deduct half if using ’,’ instead of
’*’

3

3. Binary Trees and Binary Search Trees (16 points)
Recall the definition of generic binary trees and the BST insert function:
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

let rec insert (t:’a tree) (n:’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

a. Circle the trees that satisfy the binary search tree invariant. (Note that we have omitted the
Empty nodes from these pictures, to reduce clutter.)

(a) (b) (c) (d) (e)

1 4 4 1 4
\ / \ / \ \ \
2 2 6 1 6 3 5
\ / \ / \ \ / \ \
3 1 5 0 2 8 2 4 5
\ \
4 6

Answer: (a), (c), (d)

b. For each definition below, circle the letter of the tree that it constructs or “none of the above”.

(a) (b) (c) (d) (e)

1 4 4 1 4
\ / \ / \ \ \
2 2 6 1 6 3 5
\ / \ / \ \ / \ \
3 1 5 0 2 8 2 4 5
\ \
4 6

Grading Scheme: -2 for anything wrong
let t1 : int tree =
Node(Empty, 1, Node(Node(Empty,2,Empty), 3, Node (Empty,4,Empty)))

(a) (b) (c) (d) (e) none of the above
Answer: (d)

4

let t2 : int tree =
insert (insert (insert (insert Empty 1) 2) 3) 4

(a) (b) (c) (d) (e) none of the above
Answer: (a)

let t3 : int tree =
insert (insert (insert (insert Empty 4) 5) 5) 6

(a) (b) (c) (d) (e) none of the above
Answer: none of the above

let t4 : int tree =
insert (Node ((insert (insert (insert Empty 2) 1) 5), 4, Empty) 6

(a) (b) (c) (d) (e) none of the above
Answer: (b)

5

4. Modules (14 points)
For this question, suppose we’ve written the following definition of a module signature MOD and
two modules ModOne and ModTwo conforming to the signature MOD:

module type MOD = sig
type t
val x : t
val f : t -> int

end

module ModOne : MOD = struct
type t = bool
let x = false
let f (b:t) : int = if b then 1 else 0

end

module ModTwo : MOD = struct
type t = int
let x = 41
let y = 16
let f (b:t) : int = b + 1

end

Grading Scheme:

• 2 points each

• 1 point for incorrect output

• In e, - 1 point if answer mentions bools and ints

• In g, 1 point for “17, 42”

a. Does the following module definition typecheck? If not, briefly (one sentence) explain why
not.

module MyMod3 : MOD = struct
type t = int
let x = 16

end

No: f is missing.

b. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f ModOne.x)

Yes. 0.

c. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f true)

No: ModOne.f requires a ModOne.t as an argument (and true does not have type ModOne.t

outside of the definition of ModOne).

6

d. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModTwo.f ModTwo.y)

No: The MOD interface does not specify a y component, so the y in ModTwo is hidden.

e. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f ModTwo.x)

No: ModOne.f requires a ModOne.t as an argument, not a ModTwo.t.

f. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f ModOne.x + ModTwo.f ModTwo.x)

Yes. 42.

g. List all the values that could possibly be printed when we run the following client code (for
all possible ways of filling in the body of z).

let z : ModTwo.t = ...
;; print_int (ModTwo.f z)

42

7

5. Program Design (20 points)
Use the four-step design methodology to implement a function called rotations that computes
all the cyclic permutation of a list, ie. given a list [v1, v2, . . . , vn] of n values (where n ≥ 0),
returns the list

[[v1; v2; . . . ; vn]; [v2; . . . ; vn; v1]; [vn; v1; . . . ; vn−1]]

also of length n.

For example, rotations [1;2;3;4] should yield the list:

[[1;2;3;4]; [2;3;4;1]; [3;4;1;2]; [4;1;2;3]]

a. Step 1 is understanding the problem. You don’t have to write anything for this part—your
answers below will demonstrate whether or not you succeeded with Step 1.

b. Step 2 is formalizing the interface. Write down the type of the rotations function as you
might find it in a .mli file or module interface.

val rotations: ’a list -> ’a list list

Grading Scheme: 3 points. Accepting both int and ’a type

c. Step 3 is writing test cases. Complete the following three tests with the expected behavior.
We have done the first one for you, based on the problem description.
Note that some test cases are better than others, and credit will be assigned accordingly: make
sure your tests cover a sufficiently broad range of “interesting” input numbers and lists. Fill
in the description string of the run_test function with a short explanation of why the test
case is interesting. Your description should not just restate the test case, e.g. ”rotations
[1;2;3]”.

i. let test () : bool =
rotations [1;2;3;4] = [[1;2;3;4]; [2;3;4;1]; [3;4;1;2]; [4;1;2;3]]

;; run_test "rotations on normal list" test

Grading Scheme: 3 points each. Interesting: empty, single element, repetitions. Nega-
tive 2 for duplicate testcases

d. Step 4 is implementing the program. Fill in the body of the rotations function to complete
the design. You can use @ or any of the higher order functions in the appendix in your answer.
Hint : You can also define an auxilliary function.

let rec aux (prev : ’a list) (rest : ’a list) : ’a list list =
begin match rest with
| [] -> []
| h :: t -> (rest @ prev) :: aux (prev @ [h]) t
end

let rotations (l : ’a list) : ’a list list =
aux [] l

8

Grading Scheme:

• 2 for consistent base case

• 3 points for attempting to recurse and terminating

• 7 points for the infinitely recursing “correct” solution

• 2 for flipping head and tail

• -1 for minor type/syntax errors

9

6. Higher-Order Functions (20 points)
In this problem you will be guided into coding a function cartesian, which computes the so-
called cartesian product of two lists l1 and l2 — that is, the list of all tuples (a, b) where a comes
from l1 and b comes from l2.

You should use a single higher-order function — one of transform, filter, or fold — in your
solution to each of the subproblems (except the last).

For reference, the definitions of these functions are given in the appendix.

Grading Scheme: Point distribution: 4, 6, 6, 4

a. Write a function make_product_list that, given a list l and a value a, returns a list of tuples
whose first element is a and whose second elements ranges over all the elements of l. For
example, make_product_list [3;4;5] 1 = [(1,3);(1,4);(1,5)].
Your answer should be a call of a single higher-order function with some argument

let make_product_list (l : ’b list) (a : ’a): (’a * ’b) list =
transform (fun x -> (a,x)) l

Grading Scheme:

• 2 for function setup
– base
– list
– type

• 2 points for the inner function
– logic
– type

b. Write a function cartesian_helper that given a list [a1;a2;...;an] and another
[b1;b2;...;bm], where m,n ≥ 0, produces the following list of lists:
[[(a1,b1); (a1,b2); ... ; (a1,bm)];

[(a2,b1); (a2,b2); ... ; (a2,bm)];
...

[(an,b1); (an,b2); ... ; (an,bm)]]

For example,
cartesian_helper [1;2] [3;4] = [[(1, 3); (1, 4)]; [(2, 3); (2, 4)]].

Hint: You should use a higher-order function and make_product_list.

let cartesian_helper (l1 : ’a list) (l2 : ’b list) : (’a * ’b) list list =
transform (make_product_list l2) l1

Grading Scheme:

• function setup (2pts)
– base
– list

10

– type
• inner function (4pts)

– type
– logic

c. Write a function concat that given a list of lists produces a single list that is the concatenation
of all the elements of the original list. For example:

concat [[(1,3);(1,4)];[(2,3);(2,4)]] = [(1,3);(1,4);(2,3);(2,4)]

Again, you answer should be a call to a single higher-order function with some argument.

let concat (l : ’a list list) : ’a list =
fold (fun elem acc -> elem @ acc) [] l

(∗ fold (@) [] l ∗)

Grading Scheme:

• function setup (3pts)
– fold
– base
– list

• inner function (3pts)
– type
– logic

d. Finally, use the functions you defined above to write the function cartesian, defined in the
beginning of this problem. For example,

cartesian [1;2] [3;4;5] = [(1,3);(1,4);(1,5);(2,3);(2,4);(2,5)]

Hint: Do not use any higher-order functions or recursion here. A simple combination of the
functions you have coded above should be enough!

let cartesian (l1 : ’a list) (l2 : ’b list) : (’a * ’b) list =
concat (cartesian_helper l1 l2)

Grading Scheme:

• 1pt for using concat as the outer one
• 1pt for using concat with correct types
• 1pt for cartesian helper
• 1pt for using it with correct types

11

Appendix

let rec transform (f: ’a -> ’b) (x: ’a list): ’b list =
begin match x with
| [] -> []
| h :: t -> (f h) :: (transform f t)
end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list): ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)
end

let rec filter (f: ’a -> bool) (l: ’a list) : ’a list =
begin match l with
| [] -> []
| h::t -> if f h then h :: filter f t else filter f t

end

12

