
CIS 120 Midterm I October 2, 2015

SOLUTIONS

1



1. Reasoning about Program Behavior (12 points)

Multiple choice: For each of the following (well-typed) programs, check the box for the
value computed for ans, or mark “infinite loop” if the program loops.

Grading: 4 points each, no partial credit.

a. let x : int = 3
let f (y:int) : int =
let x = y + y in x

let ans : int = f x

ans = � 3 � 6

� 12 � infinite loop

b. let rec f (l:int list) : (int * int) list =
begin match l with
| [] -> [(0,0)]
| x::xs -> (x,x)::(f l)

end
let ans : int list = f [1;2]

ans = � [(0,0)] � [(1,1); (2,2); (0,0)]

� [(0,0); (1,1); (2,2)] � infinite loop

c. let rec f (l: (int -> int) list) : int -> int =
begin match l with
| [] -> fun x -> x
| g::gs -> fun x -> g (f gs x)

end
let ans : int = f [(fun x -> x + 1); (fun x -> x * 2)] 3

ans = � 6 � 8

� 7 � infinite loop

2



2. Program Design (28 points)

In this problem, we will use the design process to implement an abstract type of cycles,
which act like a kind of infinitely long lists. Intuitively, a cycle is some finite sequence of
elements that is repeated forever. We can create a cycle from a (non-empty) list using the
cycle_of_list operation:
let cyc123 : int cycle = cycle_of_list [1;2;3]

Here, we intend for cyc123 to represent the infinite repeating sequence 1 2 3 1 2 3 1 2 3 . . ..

We can get the first element and the rest of a cycle using the hd_and_rest operation, for
example:
let (hd, rest) : int * int cycle = hd_and_rest cyc123

After this declaration, hd = 1 (the first element of cyc123) and rest would represent the
remaining infinite cycle 2 3 1 2 3 1 2 3 1 2 3 1 . . .. Note that this remainder is still a cycle
generated from the list [2;3;1].

Finally, we can test two cycles for equality using equals. Note that two cycles can be equal
even if they are created from different lists. For example, the following expression evaluates
to true:
equals (cycle_of_list [1;2]) (cycle_of_list [1;2;1;2])

whereas the one below evaluates to false (because the head elements differ):
equals (cycle_of_list [1;2]) (cycle_of_list [2;1])

One snag is that there is no good way to create a cycle from an empty list. We therefore
expect cycle_of_list to be undefined in that case. For the purposes of this problem we
will simply have cycle_of_list fail if it is called on an empty list.

(0 points) Step 1 is understanding the problem. You don’t have to do anything for this part—your
answers below will demonstrate whether or not you succeed in Step 1.

(6 points) Step 2 is formalizing the interface. Complete the following interface definition, by
filling in appropriate types for the missing blanks:

module type CYCLE = sig
type ’a cycle

val cycle_of_list : ’a list -> ’a cycle
val hd_and_rest : ’a cycle -> ’a * ’a cycle
val equals : ’a cycle -> ’a cycle -> bool

end

Grading guide: 2 points each

3



(10 points) Step 3 is writing test cases. Given the interface, we can now write some test cases
that will help our understanding of the problem and aid in debugging. The problem
description above implicitly describes several such tests, which are partially specified
below. Complete the code so that it matches the problem description. We have done
the first one for you (be sure you understand it!). For test (c), you need to complete
the test and the name; it should not be redundant. For good measure, we have added an
additional test (d), not described above—you should be able to complete it too.
Grading guide: 2 points per blank. -1 point for using = instead of equals. -1 point for
redundant test.

let cyc123 : int cycle = cycle_of_list [1;2;3]

let test () : bool =
cycle_of_list [] = cycle_of_list []

;; run_failing_test "no empty cycle" test

let test () : bool =
let (hd, _) = hd_and_rest cyc123 in
hd = 1

;; run_test "correct hd for cyc123" test

let test () : bool =
let (_, rest) = hd_and_rest cyc123 in
equals rest (cycle_of_list [2;3;1])

;; run_test "correct rest for cyc123" test

let test () : bool =
equals (cycle_of_list [1;2]) (cycle_of_list [1;2;1;2])

;; run_test "nontrivial equality" test

let test () : bool =
let cyc = cycle_of_list [true] in
let (hd, rest) = hd_and_rest cyc in
hd = true && equals cyc rest

;; run_test "surprising equality" test

4



(12 points) Step 4 is implementing the program. We can implement the CYCLE interface in a mod-
ule, using an ordinary list as the concrete representation. For example, 1 2 3 1 2 3 1 2 3 . . .
can be represented by either the list [1;2;3] or the list [1;2;3;1;2;3]. There is a
simple invariant, justified by the lack of an “empty” cycle: the list is not [].
Complete the implementation below so that all of the tests pass, matching the behav-
ior described in the problem statement. Note that we have marked some of the type
annotations with ?? so as not to give away the answers to Step 2.

– You will need to use failwith in two places: once to mark a situation that is
impossible given that the invariant holds, and once to establish the invariant. Call
failwith on the strings "IMPOSSIBLE" and "ESTABLISHING INVARIANT" to mark
them accordingly.

– You may use the operation l1 @ l2, which appends the two lists l1 and l2.
– Note that the helper function in equals can mention c1 and c2, if needed.

module Cycle : CYCLE = struct
(∗ INVARIANT: the list is not [] ∗)
type ’a cycle = ’a list

let cycle_of_list (l : ??) : ’a cycle =
begin match l with
| [] -> failwith "ESTABLISHING INVARIANT"
| x::tl -> l

end

let hd_and_rest (l : ??) : ?? =
begin match l with
| [] -> failwith "IMPOSSIBLE"
| x::tl -> (x, tl @ [x])

end

let equals (c1: ??) (c2: ??) : ?? =
let rec helper l1 l2 =
begin match (l1, l2) with
| ([], []) -> true
| (_ , []) -> helper l1 c2
| ([], _ ) -> helper c1 l2
| (x::xs, y::ys) -> x = y && helper xs ys

end
in
helper c1 c2

end

5



Grading guide:

– 1 point for each base case
– cycle_of_list: 1 point for returning
– hd_and_rest: 1 point for using tuple; 2 points for correct values; 1 point penalty

for incorrect list construction (cons instead of append)
– helper: 3 points for the two unequal length cases: 1 for using helper and 2 for

correct arguments; 2 points for last case: 1 point for x = y, 1 point for correct
recursive call, 1 point for using &

6



3. Types (16 points)

For each OCaml value below, fill in the blank with the appropriate type annotation or write
“ill typed” if there is a type error on that line. Your answer should be the most specific type
possible, i.e. int list instead of ’a list. We have done the first one for you.

Some of the definitions refer to the MyMap module, which satisfies the following interface:
module type MAP = sig
type (’k,’v) map

val empty : (’k,’v) map
val add : ’k -> ’v -> (’k,’v) map -> (’k,’v) map
val remove : ’k -> (’k,’v) map -> (’k,’v) map
val mem : ’k -> (’k,’v) map -> bool
val get : ’k -> (’k,’v) map -> ’v option
val entries : (’k,’v) map -> (’k * ’v) list
val equals : (’k,’v) map -> (’k,’v) map -> bool

end
module MyMap : MAP = struct ... end

Grading guide: 2 points each, partial credit for nearly correct answers.
;; open MyMap

let x : __________ (int, string) map __________ = add 120 "is fun" empty

let a : _________ bool list * int list ________ = ([true], [3])

let b : ____________ ill typed ________________ = [1;2;3]::[4;5;6]

let c : ____________ ill typed ________________ = entries [(1, "uno"); (2, "dos")]

let d : _____________ string option ___________ = get 3 (add 1 "uno" empty)

let e : __________ (int -> int) -> int ________ = fun (g:int -> int) -> g 3

let f : ________ ’v -> (int * ’v) list ________ = fun (x:’v) ->
entries (add 3 x empty)

let g : ____________ ill typed ________________ = if get 3 empty then 3 else 4

let h : ((int, int) map -> (int, int) map) list = [add 1 2; remove 3]

7



4. Binary Trees (20 points)

Below is the code for our standard definition of the type of generic binary trees, along with
a new function called tree_transform, which transforms a given tree in the same way that
the list transform function we saw in lecture and HW3 transforms a list.

type ’a tree =
| Empty
| Node of (’a tree) * ’a * (’a tree)

let rec tree_transform (f:’a -> ’b) (t:’a tree) : ’b tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) -> Node(tree_transform f lt,

f x,
tree_transform f rt)

end

Consider the tree t, shown below (note that, as usual, the picture omits the Empty parts).
let t : int tree = ... (∗ definition omitted ∗)

4

2 7

1 3 6

For each of the four programs (a) –(d) below, draw the tree ans that is obtained by applying
the given function to the tree t pictured above.

Grading guide: for the tree pictures. 4 points per diagram. -1 for simple errors like forgetting
to add 1 in one node; -2 for one-off-error on pattern match; -3 for worse mistakes; -4 for
completely incorrect.

(a) let f1 : int tree -> int tree =
tree_transform (fun x -> x + 1)

let ans : int tree = f1 t

5

3 8

2 4 7

(b) let f2 : int tree -> bool tree =
tree_transform (fun x -> x > 2)

let ans : bool tree = f2 t

true

false true

false true true

8



(c) let f3 (t : ’a tree) : ’a tree =
begin match t with
| Empty -> Empty
| Node(Empty, x, rt) -> Node(Empty, x, rt)
| Node(Node(llt, y, lrt), x, rt) -> Node(llt, y, Node(lrt, x, rt))
end

let ans : int tree = f3 t

2

1 4

3 7

6

(d) let rec f4 (t : ’a tree) : ’a tree =
begin match t with
| Empty -> Empty
| Node(left, x, right) -> Node(f4 right, x, f4 left)
end

let ans : int tree = f4 t

4

7 2

6 3 1

(4 points) Which of the functions f1 through f4 preserve the binary search tree invariant?
(For all inputs, not just the examples shown). That is, assuming that the input is a BST, the
output is guaranteed to be a BST. Circle each such function.

f1 f2 f3 f4

Grading guide: 1 point per function

9



5. List Processing and Higher-order Functions (24 points)

Recall the higher-order list processing functions as defined below:

let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with
| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base:’b) (l : ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

let rec filter (pred: ’a -> bool) (l: ’a list) : ’a list =
begin match l with
| [] -> []
| hd :: tl -> if pred hd then hd :: (filter pred tl) else filter pred tl
end

a. Use one of transform, fold, or filter, along with suitable anonymous function(s), to
implement a function that retains only those pairs of a list whose first element is greater
than its second. For example, the call largest_first [(1,2); (4,3); (5,5); (6,0)]

evaluates to the list [(4,3); (6,0)].
let largest_first (l: (int * int) list) : (int * int) list =
filter (fun (x, y) -> x > y) l

b. Use one of transform, fold, or filter, along with suitable anonymous function(s),
to implement the list reverse function. Recall that reverse [1;2;3] evaluates to
[3;2;1]. You may use the operation l1 @ l2, which appends the two lists l1 and
l2.
let reverse (l:’a list) : ’a list =

fold (fun x acc -> acc @ [x]) [] l

10



Grading guide for both (a) and (b):

• 1 pt for recognizing which HOF to use
• 1 pt for the base case / input list
• 1 pt for the args to the anonymous function
• 3 pts for the implementation of the anonymous function
• 1 pt for code that typechecks

Part (a)

• 2 inputs instead of tuple: -1
• wrong order of elements: -1
• recursive solution: 2/7 points

Part (b)

• argument to append not a list -1
• hd::tail

• -2 for incorrect order of args to append

11



c. The somewhat clunky code below implements a function called suffixes using fold.
This function computes a list of all the suffixes of a given list. Recall that a suffix of
l is a contiguous sub-list starting from the end of l. For example, suffixes [1;2;3]

evaluates to [[1;2;3]; [2;3]; [3]; []].
let suffixes (l:’a list) : ’a list list =
fold (fun (x:’a) (acc:’a list) ->

begin match acc with
| ls::rest -> (x::ls)::acc
| _ -> failwith "impossible"
end) [[]] l

Fill in the two cases below to re-implement suffixes without using fold. Your code
should be much simpler than that above. (This example illustrates why just because it
is possible to use fold it is not always a good idea.)
let rec suffixes (l:’a list) : ’a list list =
begin match l with

| [] -> _____[[]]__________________

| x::tl -> ____l::(suffixes tl)_____________________________________
end

Grading guide: 1 pt for the base case; 1 pt for the l::_ and 1 pt for the recursive call

d. Having implemented reverse and suffixes, we can now use them to conveniently
implement prefixes, which computes the list of all prefixes of a given list. Recall that
a prefix of l is a contiguous sub-list starting from the beginning of l. For example,
prefixes [1;2;3] evaluates to [[1;2;3]; [1;2]; [1]; []].
Complete the implementation of prefixes below. To get full credit, you may not use
recursion, pattern matching, or anonymous functions. Instead, simply call (some of)
transform, fold, filter, reverse, and suffixes on appropriate arguments.
let prefixes (l:’a list) : ’a list list =
transform reverse (suffixes (reverse l))

Grading guide: 2 pts for the correct order of elements transform reverse _, 4 pts
for the correct elements ((suffixes reverse l), 1 pt for correctly combining them.
Special cases:

• forgetting l -1 pt
• reverse (suffixes (reverse l)) is 5 points
• suffixes (reverse l) is 4 points
• transform reverse (suffixes l) is 4 points
• reverse (suffixes l) is 2 points
• reverse l is 1 point

12


