
CIS 120 Midterm II March 29, 2013

Name (printed):
Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

1 /20

2 /20

3 /16

4 /16

5ab /11

5c /17

Total /100

• Do not begin the exam until you are told to do so.

• You have 50 minutes to complete the exam.

• There are 100 total points.

• There are 9 pages in this exam, plus two pages of Appendix.

• Make sure your name and Pennkey (a.k.a. username) is on the top
of this page.

• Be sure to allow enough time for all the problems—skim the entire
exam first to get a sense of what there is to do.

1



1. Java True/False (20 points)

Circle T or F.

a. T F In the Java ASM, object values are stored in the heap.

b. T F In the Java ASM, method definitions are stored in the heap.

c. T F In the Java ASM, a (nonstatic) method dispatch o.m() uses the static type of o to
determine which version of the method m to invoke.

d. T F In the Java ASM, a (nonstatic) method dispatch o.m() implicitly pushes the this

reference onto the stack.

e. T F Once an array is allocated, its length cannot be changed.

f. T F If x is an array of length 7, the expression x[7] will trigger an
ArrayIndexOutOfBoundsException.

g. T F The expression new C() invokes the main method of the class C.

h. T F Instance variables (aka fields) can never be null.

i. T F A class may implement multiple interfaces.

j. T F Object is a superclass of all classes in Java.

2



2. Java types (20 points)

Consider the following Java class and interface definitions inspired by Homework 7:

public interface Transformer {
public Pixel transformPixel (Pixel p);

}
public class GrayScaleAverage implements Transformer {

public Pixel transformPixel(Pixel p) { ... }
}
public class Manipulate {

public static NewPic transform(NewPic p, Transformer t) { ... }
public static Transformer asTransformer(Transformer t) {

return t;
}

}
public class Pixel {

public Pixel (int r, int g, int b) { ... }
}
public class NewPic {

public NewPic(String file) { ... }
}

Write down a type for each of the following Java variable definitions. Due to subtyping, there
may be more than one correct answer. Any correct answer will be accepted. Write ill-typed if the
compiler would flag a type error for that line (i.e. Eclipse would underline something in red). The
first one has been done for you as a sample and is used in the remaining the definitions.

a. ___NewPic__________ p = new NewPic("italy.png"); // sample

b. ___________________ x1 = 1 / 2;

c. ___________________ x2 = 1.0 / 2.0;

d. ___________________ x3 = (int)Math.round(1.0 / 2.0);

e. ___________________ x4 = new Transformer();

f. ___________________ x5 = new GrayScaleAverage();

g. ___________________ x6 = new Pixel(256,300,300);

h. ___________________ x7 = Manipulate.transform(p,new GrayScaleAverage());

i. ___________________ x8 = new GrayScaleAverage().transform(p);

j. ___________________ x9 = GrayScaleAverage.transformPixel(new Pixel(0,0,0));

k. ___________________ x10 = Manipulate.asTransformer(new GrayScaleAverage());

3



3. Encapsulation (16 points)

Which of these Java classes completely encapsulate their local state? Circle T if the state can only
be modified using the methods of the class or F otherwise. For each class that does not encapsulate
its state, give a short code snippet (at most three lines) that demonstrates how its state could be
mutated.

a. class A {
public int x;
public A() { x = 3; }
public int get() { return x; }

}

T F

b. class B {
private int[] x;
public B(int [] x0) { this.x = x0; }
public int get(int i) { return x[i]; }

}

T F

c. class C {
private A a;
public C() { a = new A(); }
public int get() { return a.get(); }

}

T F

d. class D {
private A a;
public D() { a = new A(); }
public A get() { return a; }

}

T F

4



4. OCaml ASM (16 points)

Recall the following definitions of queues in OCaml:
(∗ Mutable queues, as defined in class . ∗)
type ’a qnode = { v: ’a;

mutable next: ’a qnode option}

type ’a queue = { mutable head : ’a qnode option;
mutable tail : ’a qnode option }

Suppose the OCaml ASM executes starting with the configuration shown on the next page. Modify
the stack and heap diagram to show what it will look like at the point in the computation marked
(∗ HERE ∗).

Note:

• you might need to allocate new heap objects,

• you may need to add “Some bubbles” in the appropriate places,

• you might have to move pointers (if so, mark the erased pointers clearly with an X). If your
work is not clear, it will not get credit.

• you should show only the final state!

• the Appendix of the exam contains the complete implementation of queues and an example
of the stack and heap diagram for an OCaml program.

(The problem continues on the next page.)

5



The code on the workspace below refers to the following function.
let rec g (qno : ’a qnode option) (m : int) : ’a qnode =
begin match qno with
| Some qn -> if m = 0 then qn else g qn.next (m-1)
| None -> failwith "invalid input"
end

Workspace Stack Heap

enq q 7;
let qn1 = g q.head 1 in
qn.next <- Some qn;
let qn2 = g q.head 1 in
(∗ HERE ∗)

head!
tail!

v! 1!

next!

v! 2!

next!

v! 3!

next!
qn#

q#

6



5. Program Design (28 points total)

Implement a function, called dedup, which removes all adjacent repeated elements from a queue.
In other words, this function should remove any value from the queue that is equal to the value
that occurs immediately before it.

For example, if a queue q contains the values 1,2,2,3,3,2 (in that order) then after an execution
of dedup q, the queue q should contain 1,2,3,2 (in that order), where the second 2 and the second
3 have been removed.

a. (0 points) The first step is to understand the problem. There is nothing to write here—your
answers to the other parts will show how well you have accomplished this step.

b. (3 points) The next step is to define the interface. Write the type of the operation as you
might see it in a .mli file.

val dedup : __________________________________________

c. (8 points) The next step is to write test cases. For example, one possible test case is derived
from the example in the program description. (This test case uses the queue operations
create, enq, and to_list, defined in the appendix.)
let test () : bool =
let q = create () in
enq q 1;
enq q 2;
enq q 2;
enq q 3;
enq q 3;
enq q 2;
dedup q;
to_list q = [1;2;3;2]

;; run_test "Given from problem description" test

7



Now, complete two more test cases for this method, accompanied by a short explanation of
why they are interesting. You will LOSE points on this problem if you don’t include the
explanation.

i. let test1 () : bool =
let q = create () in

dedup q;

to_list q = __________________

;; run_test "________________________________________" test1

ii. let test2 () : bool =
let q = create () in

dedup q;

to_list q = __________________

;; run_test "_______________________________________" test2

8



d. (17 points) The final step is to implement the function. You implementation should not allo-
cate any new qnodes, it should only remove the appropriate nodes from the queue. Therefore,
you cannot use enq. We’ve given you a hint by providing the interface to a helper function
that you should use to traverse the queue. The arguments to this helper function should be
the current node of the traversal and a reference to the node after it in the queue (if there is
one).
let dedup (q: ______________) : _________ =

let rec helper (curr : ’a qnode) (nxt : ’a qnode option) : unit =

9



Appendix: OCaml Linked Queue implementation
type ’a qnode = { v : ’a;

mutable next : ’a qnode option }

type ’a queue = { mutable head : ’a qnode option;
mutable tail : ’a qnode option }

let create () : ’a queue =
{ head = None; tail = None }

let is_empty (q:’a queue) : bool =
q.head = None

let enq (x:’a) (q:’a queue) : unit =
let newnode_opt = Some { v = x; next = None} in
begin match q.tail with
| None -> q.head <- newnode_opt;

q.tail <- newnode_opt
| Some qn2 ->

qn2.next <- newnode_opt;
q.tail <- newnode_opt

end

let deq (q:’a queue) : ’a =
begin match q.head with
| None -> failwith "error: empty queue"
| Some qn ->

begin match q.tail with
| Some qn2 ->

if qn == qn2 then
(∗ deq from 1−element queue ∗)
(q.head <- None;
q.tail <- None;
qn2.v)

else
(q.head <- qn.next;
qn.v) (∗ Make sure to use parens around ; expressions . ∗)

| None -> failwith "invariant violation"
end

end

let to_list (q : ’a queue) : ’a list =
let rec loop (qn : ’a qnode option) (acc : ’a list) : ’a list =

begin match qn with
| None -> List.rev acc
| Some qn1 -> loop qn1.next (qn1.v :: acc)
end in

loop q.head []

10



Appendix: An example of the Stack and Heap components of the OCaml Abstract Stack Machine. Your
diagram should use similar “graphical notation” for Some v and None values.
(∗ The types of mutable queues. ∗)
type ’a qnode = { v : ’a;

mutable next : ’a qnode option}

type ’a queue = { mutable head : ’a qnode option;
mutable tail : ’a qnode option }

let qn1 : int qnode = {v = 1; next = None}
let qn2 : int qnode = {v = 2; next = Some qn1}
let q : int queue = {head = Some qn2; tail = Some qn1}
(∗ HERE ∗)

The OCaml program above yields the ASM Stack and Heap depicted below when the program exe-
cution reaches the point marked (∗ HERE ∗).

!"##$%&'(%)'*%'"'%*%+,-./0')1,1,'

enq 2 q!

2*345."6,' 7/"64' 8,".'

!97:;<='7.3$%&';<::'

)%:'

head!
tail!

v! 2!

next!

v! 1!

next!

)%;'

)'

11


