
CIS 120 Midterm II March 25, 2015

SOLUTIONS

1

1. OCaml and Java: True/False (22 points)

Circle T or F.

a. T F Variables stored on the stack in the OCaml Abstract Stack Machine are not mutable,
although they may refer to mutable records in the heap.

b. T F All records are mutable in OCaml.

c. T F A well-typed OCaml program can fail with an error because it tried to use a null

pointer.

d. T F In both Java and OCaml, if v1 and v2 are references, then the expression v1 == v2

evaluates to true exactly when they refer to the same location in the heap.

e. T F In OCaml, if s and t are variables of type string such that s == t, then s = t is
guaranteed to return true.

f. T F In Java, if s and t are variables of type String such that s.equals(t), then s == t

is guaranteed to return true.

g. T F The following OCaml function will terminate by exhausting stack space if called
as loop 10.
let rec loop (x:int) : int list =
if x = 0 then [] else x :: loop x

h. T F There is a type that can be filled in for the blank in the following OCaml program
to make it well typed.
type ’a ref = { mutable contents : ’a }

let x : ____________________ = { contents = [] }
;; x.contents <- ((fun () -> ()) :: x.contents)

i. T F In our GUI library, an event_listener is a first-class function stored in the hidden
state of a notifier widget. When an event occurs in the widget, the notifier

invokes all of the registered event_listeners.

j. T F Applications built using our OCaml GUI library should put all code for drawing in
event listeners.

k. T F In the OCaml ASM, first-class functions are stored in the heap and may have local
copies of variables that were on the stack when they were defined.

2

2. Higher-order functions: fold (15 points)

The following functions below are written without using fold. Circle the correct redefinition in
terms of this higher-order function.

let rec fold (combine: ’a -> ’b -> ’b) (base : ’b) (x: ’a list) : ’b =
begin match x with
| [] -> base
| h :: t -> combine h (fold combine base t)
end

a. let rec reverse (x : int list) : int list =
begin match x with
| [] -> []
| h :: t -> reverse t @ [h]
end

How would you rewrite this function using fold?

i. let reverse (x : int list) : int list =
fold (fun (h:int) (y:int list) -> h :: y) 0 x

ii. let reverse (x : int list) : int list =
fold (fun (h:int) (y:int list) -> y @ [h]) 0 x

iii. let reverse (x : int list) : int list =
fold (fun (h:int) (y:int list) -> y @ [h]) [] x

iv. reverse can’t be written with fold.

Answer: iii

b. let rec g (x: ’a) (m: ’a list) : bool =
begin match m with
| [] -> false
| hd :: tl -> x == hd || g x tl
end

How would you rewrite this function using fold?

i. let g (x:’a) (m: ’a list) : bool =
fold (fun (y:’a) (z:bool) -> (x == y) || z) false m

ii. let g (x:’a) (m: ’a list) : bool =
fold (fun (y:’a) (z:bool) -> (x == hd) || g x tl) false m

iii. let g (x:’a) (m: ’a list) : bool =
fold (fun (y:’a) (z:bool) -> (x == z)) false m

iv. g can’t be written with fold.

Answer: i

3

c. let rec f (x : ’a option list) : ’a list =
begin match x with
| [] -> []
| None :: t -> f t
| Some y :: t -> y :: f t
end

How would you rewrite this function using fold?

i. let f (x : ’a option list) : ’a list =
fold (fun (h : ’a) (r : ’a list) -> h :: r) [] x

ii. let f (x : ’a option list) : ’a list =
fold (fun (h : ’a option) (r : ’a list) ->

begin match h with
| None -> r
| Some y -> y :: r
end) [] x

iii. let f (x : ’a option list) : ’a list =
fold (fun (h : ’a option) (r : ’a list) ->

begin match r with
| [] -> None
| y :: tl -> Some y
end) None x

iv. f can’t be written with fold.

Answer: ii

4

3. OCaml Abstract Stack Machine (22 points)

Recall the mutable queue implementation from class and homework and shown in Appendix A.

Suppose that we have the OCaml ASM shown below.

head

tail

q"

Stack" Heap"

v 1

next

qn1"

v 2

next

a. Does q satisfy the queue invariant? Circle true or false .

Grading Scheme: 3 points

b. Write a short piece of code that can be loaded onto the workspace to get the ASM to this
configuration. Feel free to call any of the functions in Appendix A, if it helps. However, note
that the stack and heap after your code executes must look exactly as in the drawing: it must
put variables on the stack in the correct order and it cannot include any extra stack variables
or qnodes in the heap.
let q = create () in
enq q 1;
enq q 2;
let qn1 = begin match q.head with
| Some x -> x
| None -> failwith "impossible"
end in

qn1.next <- Some qn1

or
let q = { head = None; tail = None } in
let qn1 =
let qn2 = { v = 2; next = None } in
q.tail <- Some qn2;
{ v = 1 ; next = None} in

q.head <- Some qn1;
qn1.next <- Some qn1

Grading Scheme: 10 points total. Additions:

• 1 code to put q on stack (“let q”) and allocate queue record
• 2 code to put qn1 on stack (“let qn1”) after q on stack

5

• 1 allocate record with v=1
• 1 allocate record with v=2, next = None
• 1 q.head points to Some qn1
• 1 update qn1.next
• 1 q.tail points to Some (second queue node)
• 2 no stack variable for qn2

6

c. Suppose we start executing from the ASM configuration shown on the previous page. Modify
the template stack and heap diagram below to show what it will look like after the following
code executes on the workspace.
let qn0 = { v = 0; next = q.tail } in
qn1.next <- Some qn0

Note that you may need to allocate new stack variables, heap nodes or add Some bubbles in
appropriate places. If you need to erase a line, mark it clearly with an “X”.

head

tail

q"

Stack" Heap"

v 1

next

qn1"

v 2

next

v 0

next

qn0"

Grading Scheme: 6 points.

• 2 qn1.next reference + some bubble
• 1 qn0 stack variable
• 1 qnode with v=0 on heap
• 2 qn0.next reference + some bubble

d. Does q satisfy the queue invariant after the code in part (c) has executed? Circle true
or false.
Grading Scheme: 3 points

7

4. Mutable Queues Implementation (23 points)

Implement a function, called intersperse, that inserts a value between every value in a queue.

For example, if q contains the values 1,2,3 (in that order) then, after an execution of intersperse 0 q,
the queue q should contain the values 1,0,2,0,3 (in that order). On the other hand, if q is empty
or contains a single element, then a call to intersperse should not modify the queue. All calls to
intersperse should leave q in a valid state.

Your implementation may define a single recursive helper function to traverse the queue. However
it may not call any other functions, such as from_list, to_list, deq or enq.
let intersperse (x : ’a) (q : ’a queue) : unit =
let rec loop (n : ’a qnode) : unit =
begin match n.next with
| None -> ()
| Some nn ->
n.next <- Some { v = x; next = Some nn };
loop nn

end in
begin match q.head with
| Some h -> loop h
| None -> ()
end

or
let intersperse (x :’a) (q : ’a queue) : unit =
let rec loop (no : ’a qnode option) : unit =
begin match no with
| None -> ()
| Some n ->
begin match n.next with
| Some nn ->
let newnode = { v = x; next = Some nn } in
n.next <- Some newnode;
loop (Some nn)

| None -> ()
end

end in
loop q.head

Note: this next one is not quite correct as it compares two Some nodes with ==. It should read
not (n.next == None) instead. Or use pattern matching like above.
let intersperse (x : ’a) (q : ’a queue) : unit =
let rec loop (qn: ’a qnode option) : unit =
begin match qn with
| None -> ()
| Some n -> if not (qn == q.tail) then

let nxt = n.next in
n.next <- Some {v=x; next = nxt}; loop nxt

else ()
end in
loop q.head

8

Grading Scheme: 23 points total. Additions:

• 2 inner loop present, with appropriate type annotations

• 3 type correct initial call to inner loop with q.head (or first qnode).

• 4 allocate new qnode with v=x

• 3 new qnode’s next is to correct node

• 4 update current node’s next to point to new next

• 5 correct recursive call to loop (2 if no newnode)

• 2 return () for None

• (rest) no deductions

Deductions:

• putting an extra node at the end of the queue: -3

• putting an extra node at the end of the queue and not updating the tail: -5

• changing q.head: -2

• tail.next is not None: -2

• not using Some: -2

• using options without pattern matching (n.next.next): -3

• inappropriate use of reference equality (with options): -3

• infinite loop: -5

• correct, but uses prohibited helper functions: -12

• only allocates 1 new node: -7

• wrong value for new node: -1

9

5. Listeners (18 points)

Recall the value_controller type from Homework 6.
type ’a value_controller = {
get_value : unit -> ’a;
set_value : ’a -> unit;
add_change_listener : (’a -> unit) -> unit;

}

A value controller is an “object” that encapsulates a particular value. The methods of this object
allow applications to access the value, change the value, and register change listeners. The listeners
are called with the new value whenever the value is changed.

For example, if vc is an int value_controller, then the following code
vc.add_change_listener (fun (v:int) ->

print_endline ("Value changed to: " ˆ (string_of_int v)));
vc.set_value 10;
vc.set_value 20

prints the following text on the console when executed

Value changed to: 10
Value changed to: 20

On the next page, implement make_value_controller. This function should return a new value
controller when given an initial value.

You are allowed to use the following helper function in your answer, but no other library functions.

let rec iter (f : ’a -> unit) (x : ’a list) : unit =
begin match x with
| [] -> ()
| hd :: tl -> f hd ; iter f tl
end

10

let make_value_controller (v : ’a) : ’a value_controller =
let value = { contents = v } in
let listeners = { contents = [] } in
{
add_change_listener =
(fun f -> listeners.contents <- f :: listeners.contents);

get_value =
(fun () -> value.contents);

set_value =
(fun v’ -> value.contents <- v’;
iter (fun f -> f v’) listeners.contents)

}

Grading Scheme: 18 points total

a. 2 - mutable ref for value,

b. 1 - initialize value ref to v

c. 2 - mutable ref for listeners,

d. 1 - initialize listener ref to []

e. 1 - add change listener present and correct type

f. 2 - add change listener updates listeners

g. 1 - get value present and correct type

h. 2 - get value returns current value

i. 1 - set value present and correct type

j. 1 - set value updates value

k. 4 - set value iterates through listeners

11

Appendix A: OCaml Linked Queue implementation

type ’a qnode = { v : ’a; mutable next : ’a qnode option; }

type ’a queue = {
mutable head : ’a qnode option;
mutable tail : ’a qnode option;

}

let create () : ’a queue =
{ head = None; tail = None }

let is_empty (q:’a queue) : bool =
q.head = None

let enq (x:’a) (q:’a queue) : unit =
let newnode_opt = Some { v = x; next = None} in
begin match q.tail with
| None -> q.head <- newnode_opt;
q.tail <- newnode_opt

| Some qn2 ->
qn2.next <- newnode_opt;
q.tail <- newnode_opt

end

let deq (q:’a queue) : ’a =
begin match q.head with
| None -> failwith "error: empty queue"
| Some qn ->
begin match q.tail with
| Some qn2 ->
if qn == qn2 then

(∗ deq from 1−element queue ∗)
(q.head <- None;
q.tail <- None;
qn2.v)

else
(q.head <- qn.next;
qn.v) (∗ Make sure to use parens around ; expressions . ∗)

| None -> failwith "invariant violation"
end

end

let to_list (q : ’a queue) : ’a list =
let rec loop (qn : ’a qnode option) (acc : ’a list) : ’a list =
begin match qn with
| None -> List.rev acc
| Some qn1 -> loop qn1.next (qn1.v :: acc)

end in
loop q.head []

12

Appendix B: Example Abstract Stack Machine Diagram

An example of the Stack and Heap components of the OCaml Abstract Stack Machine. Your diagram
should use similar “graphical notation” for Some v and None values.
(∗ The types for mutable queues. ∗)
type ’a qnode = { v : ’a; mutable next : ’a qnode option; }

type ’a queue = {
mutable head : ’a qnode option;
mutable tail : ’a qnode option;

}

let qn1 : int qnode = {v = 1; next = None}
let qn2 : int qnode = {v = 2; next = Some qn1}
let q : int queue = {head = Some qn2; tail = Some qn1}
(∗ HERE ∗)

The OCaml program above yields the ASM Stack and Heap depicted below when the program exe-
cution reaches the point marked (∗ HERE ∗).

!"##$%&'(%)'*%'"'%*%+,-./0')1,1,'

enq 2 q!

2*345."6,' 7/"64' 8,".'

!97:;<='7.3$%&';<::'

)%:'

head!
tail!

v! 2!

next!

v! 1!

next!

)%;'

)'

13

