Programming Languages
and Techniques
(C1S120)

Lecture 1
August 26, 2015

Course Overview and Logistics
Introduction to Program Design

Introductions

* Instructor: Dr. Steve Zdancewic*
— Levine Hall 511
— stevez@cis.upenn.edu
— http://www.cis.upenn.edu/~stevez/

— Office hours:
Mondays 3:30 — 5:00pm (may change!)
or by appointment

e Course Administrator: Laura Fox
— Levine 308

— Iffox@cis.upenn.edu

*Pronounced phonetically as: “zuh dans wick”. | won’t get upset if you mispronounce my name (really!). | will answer to
anything remotely close, or, you can call me Steve, just Professor, or Professor Z. Whatever you feel comfortable with.

CIS120 / Spring 2012 3

Teaching Assistant Staff*

Becky Abramowitz * Matt Chiaravalloti
Bethany Davis Matt Howard
Brian Hirsh Max McCarthy
Danica Fine * Mike Wen

Daniel Zhang * Nova Fallen Head TAs
Dylan Mann * Pia Kochar
Enrique Mitchell e Sahil Ahuja
Graham Mosley Samy Lanka
Jenny Chen SierraYit

Jorge Laing Bernal * Thomas Delacour
Josh Fried e Tony Mei

Joyce Lee * Vivek Raj

Liam Gallagher e Zane Stiles

*AKA: CIS 120 spirit guides, student champions, and all-around defenders of the universe.

What is CIS 1207

Practical skills:

— ability to write larger (~1000 lines)

programs

— increased independence
("working without a recipe")

— test-driven development, principled

debugging

several different

compositionality

It will be fun!

CIS120

CIS 120 is a course in program design

Conceptual foundations:
common data structures and algorithms

focus on modularity and

derived from first principles throughout

implements
classes
buttons

sbabe

name

void

module

fun

read

result

programming idioms

bool musb

lmplemenb

graphics

followingmay alementsbeginneed
reference operations ynit

return
programming

Nnction v

ASM time many Displaceable size

liISb
new:

qpeue

addva ues
= o.Q,ecbs,ocamlcode widgeb

mouse * heap m flelds

excepunons Hpﬂ b @
exprESSIOH

excepbion

case

|oop Node

ubllc

workspace next variable

1aSS
eb:

rivabe "y,

figure funcbions & sum
empbg shape
button

rogram
i goc&* [P

means

first~ Floure pon
callusing

counber
just brue

y Gree™"

mlghb_ Gyl

field Iike

bp art whebher

extent

mebhods
Qjecb mubable gypes

Prerequisites

 We assume you can already write 10 to 100-line
programs in some imperative or OO language

— Java experience is strongly recommended
— CIS 110 or AP CS is typical

— You should be familiar with using a compiler, editing code,
and running programs you have created

e CIS110is an alternative to this course

— If you have doubts, come talk to me or one of the TAs to
figure out the right course for you

Philosophy

* Teaching introductory computer
science

— Start with basic skills of “algorithmic
thinking” (AP/110)
— Develop systematic design and analysis

skills in the context of larger and more
challenging problems (120)

— Practice with industrial-strength tools and
design processes (120, 121, and beyond)

* Role of CIS120 and program design

— Start with foundations of programming
using the rich grammar and precise
semantics of the OCaml language

— Transition (back) to Java after setting up
the context needed to understand why _
Java and OO programming are good tools Plato Aristotle Al-

— Give a taste of the breadth and depth of CS Kwarizmi
CIS120

CIS 120 Tools

e OCaml

— Industrial-strength, statically-typed
functional programming language

— Lightweight, approachable setting for -
learning about program design

* Java |
— Industrial-strength, statically-typed (

object-oriented language <)
S
_ : : : S
Many tools/libraries/resources available < &
* Eclipse

— Popular open-source integrated — ecnpse
development environment (IDE) -

<120 nstallation: http://www.seas.upenn.edu/~cis120/current/ocaml|_setup.shtml

Why two languages?

Pedagogic progression
Disparity of background
Confidence in learning new tools

Perspective

“[The OCaml part of the class] was very essential to
getting fundamental ideas of comp sci across. Without the second
language it is easy to fall into routine and syntax lock where you
don't really understand the bigger picture.”

---Anonymous CIS 120 Student

“IOCaml] made me better understand features of Java that seemed
innate to programming, which were merely abstractions and
assumptions that Java made. It made me a better Java programmer."
--- Anonymous CIS 120 Student

Course Components

Lectures (2% of final grade)

— Presentation of ideas and concepts

— Interactive demos

— Grade based on participation using “clickers”

— Lecture notes available on course website. Read Chapter 1!

Recitations / Labs (6% of final grade)
— Practice and discussion in small group setting

— Grade based on participation Wa rning; This is a
Homework (50% of final grade) challenging and

— Practice, experience with tools

— Exposure to broad ideas of computer science ~ L1Me€ consuming
— Grade based on automated tests + style (but rewa rding)

Exams (42% of final grade)

— In class, pencil and paper

— Do you understand the terminology? Can you reason about
programs? Can you synthesize solutions?

course!

lots
and lots
of time

Some of the homework assignments...

Apes
|

Lesser Apes

Greater Apes

siamang

chimpanzee

Computing with DNA

Ap?leateld gibbon

e

|£ | Image Processing

Load new image Save image Undo
RotateCW
RotateCCW

Mirror vertical

Mirror horizontal

Simple transform

Contrast

Reduce palette

Blur

Flood

Quit

X/ Caml graphics

@

EXTRA DINOSAURS = EXTRA AWESOME

[OFoint] [OFllipse] [OThick lines] [OPaste]
W [& [5] (6] [[[8 Text buffer:[XTR DINDSAURS = EXTRA AVESONE]

Build a GUI Framework

L MESG java Hello, world! |
B il

type

param0
param1
payload

MESG

java

(null)

Hello, world!

Image Processing
CIS120

Client

m Emudc-sl ' Client
Additional classes

Chat Client/Server

Final project: Design a Game

800

Pong

800

Restart Level

Quit Objectives

(Instructions

Planet Game

0 coins
3 bombs

0 coins
1 bomb

Othello

File Edit Help Pass) White: 2 Black: 5

CIS120

Orbit Cruiser

0 asteraids Polftcted

energy

10 Mg effective mass

PLAY/RESET) HELP)
))

Administrative Matters

http://www.seas.upenn.edu/~cis120/

Registration / Recitations

Registration is currently closed
— Add your name to the wait list if you are not registered

— We will be accepting students off the wait list as space is
available

— If you are on the wait list, you must keep up with the course

If you need to switch recitations, fill out the online
change request form linked from the course web page

— If you don’t have a recitation, leave the first one blank

Recitations start today:
— Eclipse + OCaml setup: bring your laptop
— Space only guaranteed for what you have registered for!

CHANGE OF LOCATION

e Lab Section 213

— Thurs. 5-6pm

* Moore 207/

Clickers

We will use TurningPoint ResponseCards (clickers) for
interactive exercises during lectures.

— wrong answers will not count against your grade

Please buy one at the bookstore (textbook section)
— You can sell it back at the end of the semester

Bring it to lecture every day, beginning Friday
— Participation grades start Friday 9/4/2015

Academic Integrity

* Submitted homework must be your individual work

Talk all you want about any level of detail of
the HW, but don’t look at anyone else’s code
and don’t share yours.

* Not OK:

— Copying or otherwise looking at someone else’s code

— Sharing your code in any way (internet, copy-paste, by hand)
* OK / encouraged:

— Discussions of concepts

— Discussion of debugging strategies
— Verbally sharing experience

CIS120

Rationale

* HW is intended to be doable individually in the time
allowed.
— With help/clarification from the course staff

* Learning to debug your code is a very important skill!

— Getting too much help hinders this learning process

 There is a bit of a gray area here...
— Hard to delineate OK from not-OK behavior

— We need a simple, clear rule
— Use good judgment

Enforcement

* Course staff will check for copying.
— We use plagiarism detection tools on your code

* If you have significant discussions with another
student in the class, acknowledge them in comments
in the submitted code.

Violations will be treated seriously!

* Question? See the course FAQ. If in doubt, ask.

Penn’s code of academic integrity:

http://www.vpul.upenn.edu/osl/acadint.html

CIS120

Lecture Policy

e Laptops closed... minds open
— Although this is a computer science y

class, the use of electronic devices —
laptops, cell phones, mobile devices,
iPads, etc., in lecture is prohibited.

e Why?
— Laptop users tend to surf/chat/e-mail/
game/text/tweet/etc.
— They also distract those around them

— You will get plenty of time in front of
your computers while working on the
course projects :-)

CIS120

Program Design

Fundamental Design Process

Design is the process of translating informal
specifications (“word problems”) into running code.

Understand the problem
What are the relevant concepts and how do they relate?
Formalize the interface

How should the program interact with its environment?
Write test cases

How does the program behave on typical inputs? On unusual

ones? On erroneous ones?

Implement the required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

CIS120

5. Revise / Refactor / Edit

A design problem

Imagine the owner of a movie theater who has complete
freedom in setting ticket prices. The more he charges, the
fewer people can afford tickets. In a recent experiment the
owner determined a relationship between the price of a ticket
and average attendance. At a price of $5.00 per ticket, 120
people attend a performance. Decreasing the price by a dime
(S.10) increases attendance by 15. Unfortunately, the increased
attendance also comes at an increased cost. Every performance
costs the owner $180. Each attendee costs another four cents
(50.04). The owner would like to know the exact relationship
between profit and ticket price so that he can determine the
price at which he can make the highest profit.

Step 1: Understand the problem

 What are the relevant concepts?
— (ticket) price
— attendees
— revenue
— cost
— profit
* What are the relationships among them?
B prOﬁt = revenue — cost So profit, revenue, and cost
— revenue = price * attendees also depend on price.
— cost = S180 + attendees * $0.04

— attendees = some function of the ticket price

* Goal is to determine profit, given the ticket price

Step 2: Formalize the Interface

Idea: we’ll represent money in cents, using integers*

type annotations
declare the input
and output types™*

comment documents
the design decision

™~

(* Money 1s represented w1 cepts. *)
let profit (price : int) : int

n

* Floating point is generally a bad choice for representing money: bankers use different rounding conventions than the IEEE
floating point standard, and floating point arithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime
in your favorite programming language...

**OCaml will let you omit these type annotations, but including them is mandatory for CIS120. Using type annotations is good

documentation; they also improve the error messages you get from the compiler. When you get a type error message from
the compiler, the first thing you should do is check that your type annotations are there and that they are what you expect.

CIS120

Step 3: Write test cases

* By looking at the design problem, we can calculate
specific test cases

let profit_500 : int =
let price 500 1in
let attendees = 120 1in
let revenue price * attendees 1in
let cost 18000 + 4 * attendees 1in
revenue - cost

CIS120

Writing the Test Cases in OCaml

* Record the test cases as assertions in the program:
— the command run_test executes a test

a test is just a function that takes no input and returns true if the test succeeds

let test () : bool =
(profit 500) = profit_500

5 run_test "profit at $5.00" test

the string in quotes identifies
the test in printed output
(if it fails)

note the use of double semicolons
before commands

Step 4: Implement the Behavior

Profit is easy to define:

let attendees (price : int) = ...

let profit (price : int) =
let revenue = price * (attendees price) in
let cost = 18000 + 4 * (attendees price) in
revenue - cost

CIS120

Apply the Design Pattern Recursively

attendees® requires a bit of thought: “stub out”
/
unimplemented
& .
functions

let attendees (price : int) : 1int =
failwith “unimplemented”

let test () : bool =

(attendees 500) = 120
;; run_ test "attendees at $5.00" test |

let test () : bool =

(attendees 490) = 135

;3 run test "attendees at $4.90" teste«
generate the tests

*Note that the definition of attendees must go before the definition of profit f th bl
because profit uses the attendees function. rom e problem
statement first.

CIS120

Attendees vs. Ticket Price

160
140
120
100 Assume a linear relationship between ticket price
and number of attendees.
80 Equation foraline: y=mx+0b
m = (diff in attendance / diff in price) =- 15/ 10
o0 b =attendees —m * price = 870
40]]]
let attendees (price:int) : int =
20 -15/10 * price + 870
0

$4.75 $4.80 $4.85 $4.90 $4.95 $5.00 $5.05 $5.10 $5.15

CIS120

CIS120

Run the program!

* One of our test cases for attendees failed...
* Debugging reveals that integer division is tricky*

e Hereis the fixed version:

let attendees (price:int) :int =
(-15 * price) / 10 + 870

*Using integer arithmetic, -15 / 10 evaluates to -1, since -1.5 rounds to -1. Multiplying -15 * price before dividing by 10
increases the precision because rounding errors don’t creep in.

CIS120

Using Tests

Modern approaches to software engineering advocate
test-driven development, where tests are written
very early in the programming process and used to
drive the rest of the process.

We are big believers in this philosophy, and we’ll be
using it throughout the course.

In the homework template, we may provide one or
more tests for each of the problems. They will often
not be sufficient. You should start each problem by
making up more tests.

How not to Solve this Problem

let profit price =
price * (-15 * price / 10 + 870) -
(18000 + 4 * (-15 * price / 10 + 870))

This program is bad because it
— hides the structure and abstractions of the problem
— duplicates code that could be shared
— doesn’t document the interface via types and comments

Note that this program still passes all the tests!

CIS120

Summary

e Toread: Chapter 1 of the lecture notes and course
syllabus. Both available on the course website

 To buy: Turning Point clicker. Bring to every class,
and register your ID number on the course website

e To do: Try to install OCaml and Eclipse on your

laptops, following the setup instructions on the
course website. TAs will hold office hours this week

to help.

