Programming Languages
and Techniques
(C1S120)

Lecture 3
August 315t 2015

Lists and Recursion

Announcements

Homework 1: OCaml Finger Exercises
— Due: Tuesday 9/8 at midnight

Clickers: attendance grades start Friday

Reading: Please read Chapter 3 of the course notes,
available from the course web pages

— And chapters 1 and 2, if you haven’t yet!

Questions?

— Post to Piazza (privately if you need to include code!)

TA office hours: on course Calendar webpage

Have you started working on HW 017

1) Yes

2) No

Summary of ‘let’ Syntax

e OCaml offers two forms of ‘let’ declarations:

CIS120

o 7

let x = 1 < no in
— Top-level: = Ee:eZ:...Z “—+——____ scope of binding
= rest of file
\‘1et Z =
— Local: —let x = 1 ing .
—— : scope of binding
\>1e:c(z ; 2 in [T = expression
following “in”

Summary of ‘let’ Syntax

e Each let-binding declares a name for either a value...

let x

=2 + 4 1in
X + X

or a function...

let f (y:int) : int =y +y 1in
f 2

Note that local function bindings are also
allowed (as illustrated here)!

CIS120

What is the value computed for ‘answer’ in the
following program? (0 .. 9)

let answer : int =

let x =1 in
let y = x + x 1n
X + Y

let answer : int =
lety =1+ 1 1in

1 +y

let answer : int =
let y = 2 in
1 +y

let answer : int =
1+ 2

let answer : int =
3

What is the value computed for ‘answer’ in the
following program? (0 .. 9)

let answer : int =
let Xx = 3 1in
let f (y : int) =y + x 1n
let Xx = 1 in
f x

Answer: 4

CIS120

Commands

;5 run_test "Attendees at $5.00" test

;5 print_endline "Attendees at $5.00"
;5 print_int (attendees 500)

 Top-level commands run tests and print to the console

— They affect the state of the machine but do not yield useful
values

* Such commands are the only places that semicolons
should appear in your programs (so far)
— Many languages use ‘;” as statement terminators...not OCaml

A Design Problem / Situation

Suppose we are asked by Penn to design a new email
system for notifying instructors and students of
emergencies or unusual events.

What should we be able to do with this system?
Subscribe students to the list, query the size of the list,
check if a particular email is enrolled, compose messages
for all the list, filter the list to just students, etc.

“I"LL SEE YOU il

Design Pattern

Understand the problem
What are the relevant concepts and how do they relate?

Formalize the interface
How should the program interact with its environment?

Write test cases

How does the program behave on typical inputs? On
unusual ones? On erroneous ones?

Implement the behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

1. Understand the problem

How do we store and query information about email
addresses?

Important concepts are:

o UeEwWwN e

An email list (collection of email addresses)

A fixed collection of instructor emails

Being able to subscribe students & instructors to the list
Counting the number of emails in a list

Determining whether a list contains a particular address
Given a message to send, compose messages for all the

email addresses in the list

remove_instructors, leaving an email list just containing
the list of enrolled students

2. Formalize the interface

Represent an email by a string (the email address itself)
Represent an email list using an immutable list of strings

Represent the collection of instructor emails using a toplevel
definition

let instructor_emails : string list = ..

Define the interface to the functions:

let subscribe (email : string)
(1 : string list) : string list = ..

let length (1 : string list) : int = ..

let contains (1 : string list) (email : string) : bool = ..

3. Write test cases

let 11 : string list = [“stevez@cis.upenn.edu”;
“lankas@seas .upenn.edu”;
“maxmcc@sas.upenn.edu”]

let 12 : string list = [“lankas@seas.upenn.edu”]

let 13 : string list

Il
1
L

let test () : bool =
(length 11) = 3
;5 run_test “length 11” test

let test () : bool =
(length 12) =1
;5 run_test “length 12” test

let test () : bool =
(length 13) = 0
;5 run_test “length p3” test

Define email lists for testing.
Include a variety of lists of

different sizes and incl. some
instructor and non-instructor

emails as well.

Interactive Interlude

email.ml

A Value-Oriented Approach

What is a list?

A list value is either:
[] the empty list, sometimes called nil

or
v :: talil ahead valuev, followed by a list of the
remaining elements, the tail

* Here, the ‘: :” operator constructs a new list from a

head element and a shorter list.
— This operator is pronounced “cons” (for “construct”)

* Importantly, there are no other kinds of lists.
e Lists are an example of an inductive datatype.

Example Lists

To build a list, cons together elements, ending with the
empty list:

l::2::3::4::[] a list of four numbers
“abc"::"xyz"1:[] a list of two strings
true::[] a list of one boolean

[] the empty list

Convenient List Syntax

Much simpler notation: enclose a list of elements in
[and] separated by ;

[1;2;3;4] a list of four numbers
[“abc”;"xyz"] a list of two strings
[true] a list of one boolean

[] the empty list

Calculating With Lists

e Calculating with lists is just as easy as calculating
with arithmetic expressions:

(2+3)::(12 / 5)::[]
— 5::(12 / 5)::[] because 243 = 5

— 5::2::(] because 12/5 = 2

A list is a value whenever all of its elements are values.

List Types™

The type of lists of integers is written
int list

The type of lists of strings is written
string list

The type of lists of booleans is written
bool list

The type of lists of lists of strings is written
(string list) 1list

etc.

*Note that lists in OCaml are homogeneous — all of the list elements must be of the
same type. If you try to create a list like [1; “hello”; 3; true] you will get a type error.

Clickers, please...

Which of the following expressions has the type
int list 7
1) [3; true]
2) [1;2;3]::[1;2]
3) [::[1;2]:: [
4) (1::2)::@G::4): [
5) [1;253;4]

Answer: 5

Which of the following expressions has the type
(tnt list) list 7

1) [3; true]

2) [1;2;3]::[1;2]

3) [::[152]::[]

4) (1::2)::@3::4)::[]
5) [1;2;3;4]

Answer: 3

What can we do with lists?

What operations can we do on lists?
1. Access the elements
Create new lists by adding an element
Calculate its length
Search the list
Transform the list
Filter the list

NOo Uk WwWwN

Value oriented programming:
We can name the sub-components of a list.

We can construct new values using those names.

Pattern Matching

OCaml provides a single expression called pattern matching for inspecting
a list and naming its subcomponents.

let mylist : int list = [1; 2; 3; 5] match expression
— syntaxis:
let y ¢ int =
begin match mylist with
case</7| [1] —=> 42 l"'
branches ™| first::rest -> first+10 ’
end

begin match ... with

Case analysis is justified because there are only two shapes a list can have.

Note that £irst and rest are identifiers that are bound in the body of

the branch
— first names the head of the list; its type is the element type.
— rest names the tail of the list; its type is the list type

The type of the match expression is the (one) type shared by its braches.

Calculating with Matches

* Consider how to run a match expression:
begin match [1;2;3] with
| [] -> 42
| first::rest -> first + 10

end
Note: [1;2;3] equals1::(2::(3::[1))
1+10
It doesn’t match the pattern [] so the first branch is
—> skipped, but it does match the pattern
11 first::restwhen first is1and

rest is(2::(3::[1)) -
So, substitute 1 for £first in the second branch.

The Inductive Nature of Lists

A list value is either:

[] the empty list, sometimes called nil

or
:: tail aheadvaluev, followed by a list of the
remaining elements, the tail

 Why is this well-defined? The definition of list mentions ‘list’!

e Solution: ‘list’ is inductive:
— The empty list [] is the (only) list of O elements

— To construct a list of (1+n) elements, add a head element to an
existing list of n elements

— The set of list values contains all and only values constructed this way

* Corresponding computation principle: recursion

Recursion

Recursion principle:
Compute a function value for a given input by
combining the results for strictly smaller

subcomponents of the input.

— The structure of the computation follows the inductive

structure of the input.

Example:
length 1::2::3::[]
length 2::3::[]
length 3::[]
length []

1 + (]
1 + (1

L.engt
_.engt

1 + (]
0

L.engt

n 2::3::[])
n 3::[1])
n [

Recursion Over Lists in Code

The function calls itself recursively so Lists are either empty or nonempty.
the function declaration must be Pattern matching determines which.

marked with rec. /

let r%c length (1 :~String list) : int =
begin match 1 With
| [] -> 0
| (x :: rest) -> 1 + length rest

end X /

vV

If the list is non-empty, then “x”
is the first string in the list and “rest”
is the remainder of the list.

Patterns specify the structure of
the value and (optionally) give
names to parts of it.

Calculating with Recursion

1ength [“a”; “b”]
(substitute the list for | in the function body)
begin match “a”::“b”::[] with
| []1 > 0
| (x :: rest) -> 1 + length rest
end

(second case matches with rest = “b”::[])
1 + (length “b”::[])
(substitute the list for | in the function body)

1 + (begin match “b”::[] with

| [] -> 0
| (x :: rest) -> 1 + length rest
end)

(second case matches again, with rest = [])

1 + (1 + length [])

; ; ; let rec length (l:string list) : int=
(substitute [] for | in the function body) begin match 1 with
| [] -> 0

| (x :: rest) -> 1 + length rest
1+1+0 =2 end

Recursive function patterns

Recursive functions over lists follow a general pattern:

let rec length (1 : string list) : int =
begin match 1 with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

let rec contains (l:string list) (s:string) : bool =
begin match 1 with
| [] -> false
| (X :: rest) -> s =x || contains rest s
end

Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

let rec f (1 : .. 1list) .. : .. =
begin match 1 with

| [] -> ..
| (hd :: rest) -> .. f rest ..

end

The branch for [] calculates the value (£ []) directly.
— this is the base case of the recursion

The branch for hd: : rest calculates

(f(hd::rest))givenhdand (f rest).
—this is the inductive case of the recursion

Design Pattern for Recursion

3. Write test cases
 If the main input to the program is an immutable list, make
sure the tests cover both empty and non-empty cases

4. Implement the required behavior
 If the main input to the program is an immutable list, look for

a recursive solution...

. Is there a direct solution for the empty list?

. Suppose someone has given us a partial solution that works for
lists up to a certain size. Can we use it to build a better
solution that works for lists that are one element larger?

Interactive Interlude

email.ml

tails

e Design problem: Given a list of integers, produce all
suffixes of a given list, starting with the full list and
removing the first element at each step

—
W

A\
tails [1;2;3;4] = \1‘
[[1;2;3;4]; [2;3;4]; [3:41; [41; [1]

INIts

* Design problem: Given a list, produce all initial

prefixes of the list.

1 2.4

inits [1;2;3;4] =
[[17 [11; [1;21;7 [1;2;31;

[1;2;3741]

Challenge: All rotations

e Design problem: Given a list, produce all rotations of
the list.

1 2.4

all_rotations

all rotations [1;2;3;4] =
[[1;2;3;4]; [2;3;4;1];
[3;4;1;2]; [4;1;2;3]1]1; 1

