Programming Languages
and Techniques
(C1S120)

Lecture 4
September 2, 2015

Lists and Tuples



Announcements

Please bring your clickers to class every day
— Clicker-based attendance starts friday

Read Chapters 3 and 4 of the lecture notes
HW#1 due Tuesday at midnight

HW#2 will be available Friday
— Due: following Tuesday: 9/15



Interactive Interlude

email.ml




Tuples and Tuple Patterns



Forms of Structured Data

OCaml provides two ways of packaging multiple values
together into a single compound value:
* Lists:
— arbitrary-length sequence of values of a single, fixed type
— example: a list of email addresses
* Tuples:
— fixed-length sequence of values of arbitrary types
— example: tuple of name, phone #, and email

CIS120




Tuples

* In OCaml, tuples are created by writing the values,
separated by commas, in parentheses:

let my pair = (3, true)
let my triple = (“Hello”, 5, false)
let my quaduple = (1,2,"three”, false)

* Tuple types are written using ‘*’
— e.g.my triple has type:

string * int * bool



Pattern Matching Tuples

* Tuples can be inspected by pattern matching:

let first (x: string * int) : string =
begin match x with
| (left, right) -> left
end

first (“b”, 10)
=

“b”

e As with lists, the pattern follows the syntax of the
corresponding values
— The patterns simply name the subcomponents



Mixing Tuples and Lists

* Tuples and lists can mix freely:

[(1’IIaII); (2’IIbII); (3’llcll)]
(int * string) list

([1;2;3], [llall; llbll; IICII])
(int list) * (string list)

CIS120




What is the type of this expression?

(1, [11, [[11])

int

int list

int list list

(int * int list) list

int * (int list) * (int list list)
(int * int * int) list

none (expression is ill typed)

G

Answer: 5

CIS120



What is the type of this expression?

[ (1,true); (0, false) ]

int * bool

int list * bool list

(int * bool) list

(int * bool) list list

none (expression is ill typed)

e

Answer: 3

CIS120



CIS120

What is the type of this expression?

(1 =2 [1, 2 22 [1, 3 22 [1)

int

int list

int list list

int list * int list * int list

int * int list * int list list

(int * int * int) list

none (expression is ill typed)

G

Answer: 4




Nested Patterns

* So far, we've seen simple patterns:

[ ] matches empty list
x::tl matches nonempty list
(a,b) matches pairs
(a,b,c) matches triples

 Like expressions, patterns can nest:

X 22 [] matches lists with 1 element
[ X] matches lists with 1 element
Xs:(ys:tl) matches lists of length at least 2

(X::Xs, y::ys) matches pairs of non-empty lists



Wildcard Pattern

* Another handy pattern is the wildcard pattern: _
s:tl matches a non-empty list, but only names tail

(_rX) matches a pair, but only names the 2" part

* A wildcard pattern indicates that the value of the
corresponding subcomponent is irrelevant.

— And hence needs no name.



CIS120

What is the value of this expression?

let 1 = [1; 2] in

begin match 1 with

| X 12y 1t >
| x :: [] ->
| x :: t ->
| [] ->

end

PrWNPR

Answer: 1



let 1 =

[1; 2] in

begin match 1 with

I X

I X o

L]

end

ity ot > 1
[] -> 2

t -> 3
-> 4

let 1 =1 :: 2

CIS120

begln match 1 w1th

| X t >
| X [] ->
| x :: ->
I [] ->

D WN R

[] in

| x =
x :: []
| x :: t
| ]
end

begin match 1::2::[] with
y &

t > 1
-> 2
-> 3
-> 4




What is the value of this expression?

let 1 = [(2,true); (3,false)] in

begin match 1 with

| (x,false) :: tl -> 1
lw :: (X,y) :: z -> X
| X -> 4

end

Answer: 3

CIS120



What is the value of this expression?

let 1 = [(2,true); (3,false)] in

begin match 1 with

| (_,false) :: _ -> 1
| _ s (x,_) -> X
| _ -> 4

end

Answer: 3

CIS120



Unused Branches

 The branches in a match expression are considered
in order from top to bottom.

* |f you have “redundant” matches, then some later
branches might not be reachable.

— OCaml will give you a warning

let bad_cases (1 : int 1list) : 1int =
begin match 1 with

[:l -> @ This case matches more lists
P than that one does.
X:i_ % >/

x::§::t1 > X + Y (* unreachable *)
end

CIS120




Exhaustive Matches

e Pattern matching is exhaustive if there is a pattern for
every possible value

 Example of a non-exhaustive match:

let sum_two (1 : int 1list) : 1int =
begin match 1 with
| X:iiyii_ > X+y
| -> failwith “1 must have >= 2 elts”

end

 OCaml will give you a warning and show an example of
what isn’t covered by your cases

 The wildcard pattern and failwith are useful tools for
ensuring match coverage



More List Programming

see |lists.ml




