Programming Languages
and Techniques
(C1S120)

Lecture 5
September 4th 2015

Datatypes and Trees

Announcements

No class Monday (Labor Day)
My office hours: Moved to Tuesday 3:30 — 5:00

Submit HW1 by midnight tuesday

— Late policy: 10pt penalty for up to 24 hours
20pt penalty for 24-48 hours

Register your clicker ID number on course website
— You should start seeing “Quizzes” on the submission page
— Name of quiz is lecture date: TP150904 is Today

— If you have “Not submitted” then we don’t have an ID number
for your data

Read Chapters 5 and 6 of the course notes

More List Programming

see lists.ml

Recursive function patterns

Recursive functions over lists follow a general pattern:

let rec length (1 : string list) : int =
begin match 1 with
| [] -> 0
| (x :: rest) -> 1 + length rest
end

let rec contains (l:string list) (s:string) : bool =
begin match 1 with
| [] -> false
| (X :: rest) -> s =x || contains rest s
end

CIS120 / Spring 2014

Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

let rec f (1 : .. 1list) .. : .. =
begin match 1 with

I I
| (hd :: rest) -> .. f rest ..

end

The branch for [] calculates the value (£ []) directly.
— this is the base case of the recursion

The branch for hd: : rest calculates

(f(hd::rest))givenhdand (f rest).
—this is the inductive case of the recursion

CIS120 / Spring 2014

Design Pattern for Recursion

3. Write test cases
 If the main input to the program is an immutable list, make
sure the tests cover both empty and non-empty cases

4. Implement the required behavior
 If the main input to the program is an immutable list, look for

a recursive solution...

. Is there a direct solution for the empty list?

. Suppose someone has given us a partial solution that works for
lists up to a certain size. Can we use it to build a better
solution that works for lists that are one element larger?

CIS120 / Spring 2014

Example: zip

* zip takes two lists of the same length and returns a
single list of pairs:
le [1; 2; 3] [”a"; ubn; ”C"] =
[(1,7a"); (2,"b"); (3,"c")]

let rec zip (11: int 1list)
(12: string list) : (int * string) list =
begin match (11, 12) with
| CL1, 1) -> L[]
| (x:: xs, y:: ys) > (x, y):: (zip xs ys)
| _ -> failwith "zip: unequal length 1lists”
end

CIS120

tails

e Design problem: Given a list of integers, produce all
suffixes of a given list, starting with the full list and
removing the first element at each step

| n)

—EE

~

—~H B

\

S

tails [1;2;3;4] =
[[1;2;3;4]; [2;3;4]; [3:41; [41; [1]

CIS120

\ﬂll

INIts

* Design problem: Given a list, produce all initial
prefixes of the list.

1 2.4

inits [1;2;3;4] =
(017 (117 ([1:;21;7 [1;2;3]1; [1;2;3;41]

CIS120

Challenge: All rotations

e Design problem: Given a list, produce all rotations of
the list.

1 2.4

all_rotations

-—H
-

all rotations [1;2;3;4] =
[[1;2;3;4];[2;3;4;1];
[3;4;1;2];[4;1;2;3]]

CIS120

Datatypes and Trees

Building Datatypes

* Programming languages provide a variety of ways of
creating and manipulating structured data

* We have already seen:
— primitive datatypes (int, string, bool, ...)
— lists (int list, string list, string list list, ...)
— tuples (int * int, int * string, ...)

* Rest of Today:
— user-defined datatypes
— type abbreviations

Case Study: Evolutionary Trees

* Problem: reconstruct evolutionary trees from biological data.
— What are the relevant abstractions?
— How can we use the language features to define them?
— How do the abstractions help shape the program?

Enumerated List for
Type for Double
Nucleotides Helix lots Apes

and lots

G G of time
(13_ Greater Apes Lesser Apes
G I
A —T
A
T
A
T —G
T orangutan
2 white-cheeked gibbon
G G
T
A
C c |
C gorilla
T siamang
A ‘4 (o
chimpanzee pileated gibbon
Suggested reading:

c15120 Dawkins, The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

DNA Computing Abstractions

* Nucleotide
— Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)

* Helix
— a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...
— genetic code for a particular species (human, gorilla, etc)

* Phylogenetic tree

— Binary tree with helices (species)
at the nodes and leaves

AAAA
ACAT | AAGA

GCAT TCGT TAGA GAGA

Simple User-Defined Datatypes

e OCaml lets programmers define new datatypes

‘type’ keyword tyé) elname

type day = // (must be lowercase)

sunday type nucleotide =

Monday A

Tuesday C

Wednesday G

Thursday T

Friday \

Satu rlday construcmames (tags)

(must be capitalized)

* The constructors are the values of the datatype
— e.g. Aisanucleotideand [A; G; C]isa nucleotide list

CIS120

Pattern Matching Simple Datatypes

* Datatype values can be analyzed by pattern matching:

let string_of_n (n:nucleotide) : string =
begin match n with

A -> “adenine”

C -> “cytosine”

G -> “guanine”

T -> “thymine”

end

 There is one case per constructor
— you will get a warning if you leave out a case or list one twice

* As with lists, the pattern syntax follows that of the
datatype values (i.e. the constructors)

A Point About Abstraction

 We could represent data like this by using integers:
— Sunday =0, Monday = 1, Tuesday = 2, etc.

* But:

— Integers support different operations than days do
i.e. it doesn’t make sense to do arithmetic like:
Wednesday - Monday = Tuesday

— There are more integers than days, i.e. “17” isn’t a valid day
under the representation above, so you must be careful never
to pass such invalid “days” to functions that expect days.

* Conflating integers with days can lead to many bugs.

— Many scripting languages (PHP, Javascript, Perl, Python,...)
violate such abstractions (true == 1 == “1"), leading to much
pain and misery...

Most modern languages (Java, C#, C++, OCaml,...) provide
user-defined types for this reason.

Type Abbreviations

OCaml also lets us name types without make new
abstractions:

hucleotide 1list
nucleotide * nucleotide
* nucleotide

type helix
type codon

type
type keyword
yp y name definition in terms of existing types

no constructors!

* j.e.a codon is the same thing a triple of hucleotides
let x : codon = (A,C,C)
e Makes code easier to read & write

Data-Carrying Constructors

* Datatype constructors can also carry values

type measurement =

Missing

NucCount of nucleotide * int
CodonCount ?f codon * 1int

/ \ y J
keyword ‘of’ Constructors may take a
tuple of arguments

* Values of type ‘measurement’ include:
Missing
NucCount(A, 3)
CodonCount(CA,G, T, 17

CIS120

Pattern Matching Datatypes

e Pattern matching notation combines syntax of tuples
and simple datatype constructors:

let get_count (m:measurement) : int =
begin match m with

Missing -> 0

NucCount(_, n) -> N

CodonCount(_, n) -> n
end

* Datatype patterns bind variables (e.g. ‘n’) just like
lists and tuples

CIS120

Recursive User-defined Datatypes

* Datatypes can mention themselves!

type tree
| Leaf of helix

| Mode of tree * helix * tree

base constructor Node carries a recursive
(nonrecursive) tuple of values definition

* Recursive datatypes can be taken apart by pattern
matching (and recursive functions).

Syntax for User-defined Types

type tree =
| Leaf of helix

| Node of tree * helix * tree

* Example values of type tree

let t1 = Leaf [A;G]

let t2 = Node (Leaf [G], [A;T], Leaf [A])
let t3 = .
Node (Leaf [T], Constructors
[T;T] , (note capitalization)
Node (Leaf [G;C], [G], Leaf [1))

CIS120

type nucleotide = | A | C | G | T
type helix = nucleotide list

Clickers, please...

What is the type of this expression?

[A;C]

nucleotide

helix

nucleotide list

string * string

nucleotide * nucleotide
none (expression is ill typed)

N

Answer: both 2 and 3

CIS120

type nucleotide = | A | C | G | T
type helix = nucleotide list

Clickers, please...

What is the type of this expression?

(A, IIAII)

nucleotide

nucleotide list

helix

nucleotide * string

string * string

none (expression is ill typed)

N

Answer: 4

CIS120

type tree =
| Leaf of helix
| Node of tree * helix * tree

Clickers, please...

How would you construct this tree in OCaml?

[A;T]
N\
[A] [G]

. Leaf [A;T]
. Node (Leaf [G], ;T], Leaf [A])
. Node (Leaf [A], , Leaf [G])

. Node (Leaf [T],
Node (Leaf
. None of the above

)

A;
A;
A;
G;

A==

, [61, Leaf [1))

)

92 APWNPE

c15120 Answer: 3

