Programming Languages
and Techniques
(C1S120)

Lecture 6
September 9t , 2015

Binary Trees and Binary Search Trees

Announcements

Great job on HW1!

Homework 2 is available
— due Tuesday, Sept. 15t

Lecture attendance grade (i.e. clickers)

— Flexibility for occasional missed lectures due to minor emergencies
(i.e. it’s OK to miss a few lectures)

— No need to inform staff (or send CAR) unless you have a major
emergency

Please complete the CIS 120 Demographics Survey
— See Piazza (or this week’s labs)

Read Chapter 6 and 7

/' /,
v Vl
4
\J e
- N \), 7
§ P A
/ \\ { :‘ Qb\ 7 "‘F' 1)
\ [
N \ AN
. W \ |
N
A\
\(WA
N\ O/
S [
A X
\ \
\! /
\}
|

Trees are everywhere\/\l

Family trees

™
Hia Givtine Gl TR
Kinnboarg e y
- —_—
- o ~Hubingen -
: ks Urdmd i Gusgy e
| TS e

CIS120

Organizational charts

CoRPORATE HIERARLHY

Ef C - 1 LJP
L r:?é LoLbbh &Ld LLS
L G I Lo L

CIS120

Game trees

=

L
/T
fii i

HEN

L

Natural-Language Parse Trees

S
NP VP
N /\
D N \% NP

| |
the chef coéks tf/A\ﬁﬁ

| |
the soup

CIS120

Filesystem Directory Structure

v [classes
v [cis110
v [12fa
» [trunk
» [12su
v [cis120
» O 11fa
» @ 11sp
v [12fa
» [doc
»] exams
v [hw
-~ assert.ml
- assert.mli
" CommonExportMakefile
CommonjavaMakefile
CommonMakefile
" CommonOcamlMakefile

CIS120

Domain Name Hierarchy

/N

edu com gov mil org net
cornell ... upenn cisco..yahoo nasa... nsf arpa ... navy ...

SINANNA AN A

seas Wwharton ..

AN A

Clickers, please...

Have you ever programmed with trees before? \

1. vyes
2. no
3. not sure

CIS120

Binary Trees

A particular form of tree-structured data

Binary Trees

root node
root’s root’s
left child right child
left subtree
\ €= |eaf node

(i € empty

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

A leaf is a node whose children are both empty. CIS120

Binary Trees in OCaml|

type tree =
| Empty
| Node of tree * int * tree

let t : tree =
Node (Node (Empty, 1, Empty),
3,
Node (Empty, 2,
Node (Empty, 4, Empty)))

o C1S120 27

Representing trees

type tree =
| Empty
| Node of tree * int * tree

Node (Node (Empty, @, Empty),
1,
Node (Empty, 3, Empty))

Node (Empty, @, Empty) é

Empty v

see trees.ml

Recursive Tree Traversals

Pre-Order
Root — Left — Right

In Order
Left — Root — Right

(* Code for Pre-Order Traversal *)

let rec f (t:tree) :
begin match t with

| Empty -> ..

| Node(l, x, r) ->
let root = .. X ..
let left = f 1

let right = f r
combine root
end

in (* process root *)

in (* recursively process left *)
in (* recursively process right *)
left right

Post-Order
Left — Right — Root

The traversals
vary the order
in which these
are computed...

CIS120

In what sequence will the
nodes of this tree be visited
by a post-order traversal?

CE

[0;1;6;2;7,8]
[0;1;2;6;7,8]
[2;1,0;7;6;8]
[7;8;6;2;1,0]
[2;1,7,8;6;0]

Answer: 5

Post-Order
Left — Right — Root

CIS120

trees.ml treeExamples.ml

