Programming Languages and Techniques (CIS120)

Lecture 7

September 11th, 2015

Binary Search Trees (Lecture notes Chapter 7)

Announcements

- Homework 2 is online
 - due Tuesday, Sept. 15th

- Recitation Section 208 Weds. 5-6 has moved from Moore 100B to Moore 207
 - Note: Section 207, also Weds. 5-6, remains in Moore 100A

- My office hours next week: Tuesday 3:30 5:00
 - (not Monday, this should be the last such change)

Trees as containers

Big idea: find things faster by searching less

Trees as Containers

- Like lists, trees aggregate (possibly ordered) data
- As we did for lists, we can write a function to determine whether the data structure *contains* a particular element

```
type tree =
| Empty
| Node of tree * int * tree
```

Searching for Data in a Tree

- This function searches through the tree, looking for n
- In the worst case, it might have to traverse the entire tree
 - This version uses pre-order traversal
 (other traversal orders have the same worst case traversal time...why?)

Search during (contains t 8)

Challenge: Faster Search?

Binary Search Trees

- Key insight:
 - Ordered data can be searched more quickly
 - This is why telephone books are arranged alphabetically
 - But requires the ability to focus on half of the current data
- A binary search tree (BST) is a binary tree with some additional invariants*:
 - Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
 - Empty is a BST

^{*}An data structure *invariant* is a set of constraints about the way that the data is organized. "types" (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

An Example Binary Search Tree

Search in a BST: (lookup t 8)

Searching a BST

```
(* Assumes that t is a BST *)
let rec lookup (t:tree) (n:int) : bool =
  begin match t with
  I Empty -> false
  I Node(lt,x,rt) ->
     if x = n then true
     else if n < x then (lookup lt n)
     else (lookup rt n)
end</pre>
```

- The BST invariants guide the search.
- Note that lookup may return an incorrect answer if the input is not a BST!
 - This function assumes that the BST invariants hold of t.

BST Performance

- lookup takes time proportional to the height of the tree.
 - not the size of the tree (as it does with contains)
- In a *balanced tree*, the lengths of the paths from the root to each leaf are (almost) *the same*.
 - no leaf is too far from the root
 - the height of the BST is minimized
 - the height of a balanced binary tree is roughly log₂(N) where N is the number of nodes in the tree

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt $\mbox{are} < \mbox{x}$
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 7 to the left of 6

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt $\mbox{are} < \mbox{x}$
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 5 to the left of 4

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt $\mbox{are} < \mbox{x}$
 - all nodes of rt are > x
- Empty is a BST

Answer: no, 4 to the right of 4

Is this a BST??

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: yes

Is this a BST??

- 1. yes
- 2. no

- Node(lt,x,rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
- Empty is a BST

Answer: yes

Constructing BSTs

Inserting an element

How do we construct a BST?

Option 1:

- Build a tree
- Check that the BST invariants hold (unlikely!)
- Impractically inefficient

Option 2:

- Write functions for building BSTs from other BSTs
 - e.g. "insert an element", "delete an element", ...
- Starting from some trivial BST (e.g. Empty), apply these functions to get the BST we want
- If each of these functions preserves the BST invariants, then any tree we get from them will be a BST by construction
 - No need to check!
- Ideally: "rebalance" the tree to make lookup efficient (NOT in CIS 120, see CIS 121)

Inserting a new node: (insert t 4)

Inserting a new node: (insert t 4)

Inserting Into a BST

```
(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
  begin match t with
  | Empty -> Node(Empty,n,Empty)
  | Node(lt,x,rt) ->
     if x = n then t
     else if n < x then Node(insert lt n, x, rt)
     else Node(lt, x, insert rt n)
end</pre>
```

- Note the similarity to searching the tree.
- Note that the result is a new tree with one more Node; the original tree is unchanged
- Assuming that t is a BST, the result is also a BST. (Why?)

Constructing BSTs

Deleting an element

Deletion - No Children: (delete t 3)

Deletion - No Children: (delete t 3)

Deletion - One Child: (delete t 7)

Deletion - One Child: (delete t 7)

Deletion - Two Children: (delete t 5)

Deletion - Two Children: (delete t 5)

Would it also work to move the *smallest* label from the *right-hand* subtree?

- 1. yes
- 2. no

Answer: yes