Programming Languages
and Techniques
(C1S120)

Lecture /

September 11t, 2015

Binary Search Trees
(Lecture notes Chapter 7)

Announcements

Homework 2 is online
— due Tuesday, Sept. 15t

Recitation Section 208 Weds. 5-6 has moved from
Moore 100B to Moore 207

— Note: Section 207, also Weds. 5-6, remains in Moore 100A

My office hours next week: Tuesday 3:30—5:00
— (not Monday, this should be the last such change)

Trees as containers

Big idea: find things faster by searching less

Trees as Containers

* Like lists, trees aggregate (possibly ordered) data

 As we did for lists, we can write a function to determine
whether the data structure contains a particular element

type tree =
| Empty
| Node of tree * int * tree

CIS120

Searching for Data in a Tree

let rec contains (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) -> x =n ||
(contains 1t n) |l (contains rt n)
end

* This function searches through the tree, looking for n

* |nthe worst case, it might have to traverse the entire tree

— This version uses pre-order traversal
(other traversal orders have the same worst case traversal time...why?)

CIS120

Search during (contains t 8)

CIS120

Challenge: Faster Search?

Binary Search Trees

* Key insight:
Ordered data can be searched more quickly
— This is why telephone books are arranged alphabetically
— But requires the ability to focus on half of the current data

 Abinary search tree (BST) is a binary tree with some
additional invariants*:

* Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Empty isa BST

*An data structure invariant is a set of constraints about the way that the data is organized.
cis100 types” (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

An Example Binary Search Tree

Note that the BST
invariants hold for
this tree.

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Empty is a BST

Search ina BST: (lookup t 8)

CIS120

Searching a BST

(* Assumes that t i1s a BST *)
let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt,x,rt) ->
i1f X = n then true
else if n < x then (lookup 1t n)
else (lookup rt n)
end

 The BST invariants guide the search.

* Note that lookup may return an incorrect answer if the input
is not a BST!

— This function assumes that the BST invariants hold of t.

BST Performance

lLookup takes time proportional to the height of the tree.
— not the size of the tree (as it does with contains)

In a balanced tree, the lengths of the paths from the root to
each leaf are (almost) the same.

— no leaf is too far from the root

— the height of the BST is minimized

— the height of a balanced binary tree is roughly log,(N) where N is the
number of nodes in the tree

balanced unbalanced

Is this a BST??

1. vyes
2. ho

*Node(1lt,x,rt) isaBSTif ; .
- 1t and rt are both BSTs o
- allnodes of 1t are < x e o/

- allnodesof rt are > x
« Empty is a BST Answer: no, 7 to the left of 6

Is this a BST??

1. vyes
2. ho

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Empty is aBST

Answer: Yes

Is this a BST??

1. vyes
2. ho

*Node(1lt,x,rt) isaBSTif ; .
- 1t and rt are both BSTs o
- allnodes of 1t are < x e o/

- allnodesof rt are > x
« Empty is a BST Answer: no, 5 to the left of 4

Is this a BST??

1. vyes
2. ho

*Node(1lt,x,rt) isaBSTif ; .
- 1t and rt are both BSTs o
- allnodes of 1t are < x e o/

- allnodesof rt are > x _
« Empty is a BST Answer: no, 4 to the right of 4

Is this a BST??

1. vyes
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

*« Empty is a BST Answer: yes

Is this a BST??

1. vyes
2. no

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x

*« Empty is a BST Answer: yes

Constructing BSTs

Inserting an element

How do we construct a BST?
* Option 1:

— Build a tree
— Check that the BST invariants hold (unlikely!)
— Impractically inefficient

* Option 2:
— Write functions for building BSTs from other BSTs

* e.g. “insert an element”, “delete an element”, ...

— Starting from some trivial BST (e.g. Empty), apply these
functions to get the BST we want

— If each of these functions preserves the BST invariants, then any
tree we get from them will be a BST by construction
* No need to check!

— ldeally: “rebalance” the tree to make lookup efficient
(NOT in CIS 120, see CIS 121)

Inserting a new node: (1nsert t 4)

Inserting a new node: (1nsert t 4)

Inserting Into a BST

(* Insert n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
i1f X = n then t
else 1f n < x then Node(insert 1t n, x, rt)
else Node(lt, x, insert rt n)
end

Note the similarity to searching the tree.

Note that the result is a new tree with one more Node; the
original tree is unchanged

Assuming that t is a BST, the result is also a BST. (Why?)

Constructing BSTs

Deleting an element

Deletion — No Children: (delete t 3)

Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.

Deletion — One Child: (delete t 7)

Deletion — One Child: (delete t 7)

If the node to be delete has one
child, replace the deleted node
by its child.

Deletion — Two Children: (delete t 5)

Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
S child of the left tree.

-___________)

Would it also work to move the smallest
label from the right-hand subtree?

1. yes
2. no

Answer: yes

