Programming Languages
and Techniques
(C1S120)

Lecture 8
September 14, 2015

BST Delete
Generics

(Chapters 8 & 9)

Announcements

Read Chapters 8 and 9 of lecture notes
HW?2 due tomorrow at midnight

HW 3 will be available later today
— Due next Thursday, Sept. 24t at midnight

Clicker attendance data hasn’t yet been uploaded
— Should be available later today

My office hours: Tues. 3:30 — 5:00 this week

Constructing BSTs

Deleting an element

Binary Search Trees

A binary search tree (BST) is a binary tree with some
additional invariants*:

*Node(1lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Empty isa BST

*An data structure invariant is a set of constraints about the way that the data is organized.
cis100 types” (e.g. list or tree) are one kind of invariant, but we often impose additional constraints.

Deletion — No Children: (delete t 3)

Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.

Deletion — One Child: (delete t 7)

Deletion — One Child: (delete t 7)

If the node to be delete has one
child, replace the deleted node
by its child.

Deletion — Two Children: (delete t 5)

Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
S child of the left tree.

-___________)

Subtleties of the Two-Child Case

* Suppose Node(lt,x,rt) is to be deleted and It and rt
are both themselves nonempty trees.

* Then:
1. There exists a maximum element, m, of [t (Why?)
2. Every element of rtis greater than m (Why?)

 To promote m we replace the deleted node by:
Node(delete It m, m, rt)

— l.e. we recursively delete m from It and relabel the root
node m

— The resulting tree satisfies the BST invariants

How to Find the Maximum Element?

What is the max
element of this
subtree?

How to Find the Maximum Element?

Just for fun, how
do we find the
max element of
the whole tree?

Tree Max: A partial* function

let rec tree_max (t:tree) : int =
begin match t with
| Node(_,x,Empty) -> x
| Node(_,_,rt) -> tree_max rt
| _ -> failwith “tree_max called on Empty?”
end

* We never call tree_max on an empty tree

— This is a consequence of the BST invariants and the case analysis done
by the delete function

 BST invariant guarantees that the maximum-value node is
farthest to the right

* Partial, in this context, means “not defined for all inputs”.

Code for BST delete

trees.ml

Deleting From a BST

let rec delete (t: tree) (n: int) : tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->
1f X = n then
begin match (1t, rt) with
| (Empty, Empty) -> Empty
| (Node _, Empty) -> 1t
| (Empty, Node _) -> rt
| _ -> let m = tree_max 1t in
Node(delete 1t m, m, rt)
end
else if n < x then Node(delete 1t n, x, rt)
else Node(lt, x, delete rt n)
end

If we insert a label n into a BST and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: no, what if the node is in the tree

If we insert a label n into a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: yes

If we delete n from a BST (containing n)
and then immediately insert n again, do we
always get back a tree of exactly the same

shape?

1. yes
2. no

Answer: no, what if we delete the root?

Generic Functions and Data

Wow, implementing BSTs took quite a bit of typing...
Do we have to repeat it all again if we want to use
BSTs containing strings, or characters, or floats?

or
How not to repeat yourself, Part |I.

Structurally Identical Functions

* Observe: many functions on lists, trees, and other datatypes
don’t depend on the contents, only on the structure.

« Compare: Length for“int list”vs. “string list”

CIS120

let rec length (1: . int =
th

begin match 1 wi

| [] -> 0
| _::tl -> 1 + length tl
end

let rec length (1:(E£Eing lis
begin match 1 with

| [] > 0
| _::tl -> 1 + length tl
end

. &«
1Nt =

| The functions are

identical, except
for the type
annotation.

Notation for Generic Types

 OCaml provides syntax for functions with generic types

let rec length : int =
begin match 1 .

| [] -> 0
| _::tl -> 1 + (length tl1)
end

« Notation: ‘a isa type variable; the function Length can
beusedona t list for any type t.

 Examples:
— length [1;2;3] use length on an int list
— length [“a”;”b”;”c”] use length on a string list

CIS120

Generic List Append

Note that the two input
lists must have the same

type of elements.

The return type is the
same as the inputs.

¥

"
let rec append (11:'a list) (1£?Taﬁiist) : 'a list =
begin match 11 with
| []1 -> 12

| h::tl -> h::Cappend tl 12)

end/?

/

Pattern matching works over generic types!

In the body of the branch:
h has type ‘a
tl hastype ‘a list

CIS120

Generic Zip

Functions can operate
over multiple generic

types.

‘-\

¥ i
let rec zip (11:'a list) (12:'b list) : ('a*'b) list =
begin match (11,12) with
| (hl::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
| _ > []

end

e Distinct type variables can be instantiated differently:
Z-i.p [1;2;3] [“a”;”b”;”c”:l

* Here, ‘aisinstantiated to 1nt, ‘b to string

* Result is

[(1,4a”);(2,“b”);(3,“c™)]
of type (1nt * string) list

CIS120

User-Defined Generic Datatypes

* Recall ourinteger tree type:

type tree =
| Empty
| Node of tree * int * tree

 We can define a generic version by adding a type parameter,

like this: Parameter ‘d
R

PR used here
type 'a tree =

| Empty
| Node of "'a tree * "a * 'a tree
\ /

\ /

Note that the recursive
CIS120 uses also mention ‘a

User-Defined Generic Datatypes

 BST operations can be generic too; only change is to the type
annotation

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : ’a tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
1f X = n then t
else n < x then Node(insert 1t n, x, rt)

else Nodé %\\f;\fnsert rt n)

end

N

Equality and comparison are generic — they work for any
type of data too.

CIS120

Does the following function typecheck?

let £ (1 : 'a 1list) : 'b list =
begin match 1 with

| [] -> true::1

| _::rest -> 1::1

end

1. yes
2. no

Answer: no, even though the return type is generic, the two branches
must agree (so that ‘b can be consistently instantiated).

CIS120

Does the following function typecheck?

;5 print_endline (f “hello”)

1. yes
2. no

Answer: no, the type annotations and uses of f aren’t consistent

CIS120

