Programming Languages
and Techniques
(C1S120)

Lecture 9
September 16", 2015

HOF patterns: transform & fold

Announcements

« Homework 3 is available
— Due THURSDAY, September 24t at 11:59:59pm
— Practice with BSTs, generic functions, HOFs and abstract types

* |f you added CIS 120 recently, make sure that you can see
your scores online.

— If you get feedback about your scores, you are in our database.
— If not, please send mail to tas120@]lists.seas.upenn.edu

— If you see unsubmitted “quizzes”, you may need to register your
clicker

 Read chapters 9 & 10 of the lecture notes

First-class Functions

Higher-order Programs
or

How not to repeat yourself, Part Il.

First-class Functions

* You can pass a function as an argument to another function:

let twice (f:int -> int) (x:int) : int =
f (f x)

let add_one (z:int) : int =z + 1

let add_two (z:1int) : 1int Z + 2 function type: argument of type int
let y = twice add_one 3 and result of type int

let w = twice add_two 3

e You can return a function as the result of another function.

let make_incr (n:int) : int -> int =
let helper (x:int) : int =
n + X
in
helper
let y = twice (make_incr 1) 3

First-class Functions

You can store functions in data structures

let add_one (x:1int) : int = x+1
let add_two (x:1int) : int = x+/
let add_three (x:1int) : int = x+3

let func_list : (int -> int) list.=
[add_one; add_two; add_three |

A list of (int -> int) functions.

let func_listl : (int -> int) list =
[make_incr 1; make_incr Z2; make_incr 3]

Simplifying First-Class Functions

let twice (f:int -> 1int) (x:int) : 1nt =
f (f x)

let add_one (z:int) : int =z + 1

twice add_one 3

— add_one (add_one 3) substitute add_one for f, 3 for x
— add_one (3 + 1) substitute 3 for z in add_one
— add_one 4 3+1=4

— 4 + 1 substitute 4 for z in add_one
— 5 4+1=5

Evaluating First-Class Functions

let make_incr (n:int) : int -> 1nt =
let helper (x:int) : int = n + X 1n
helper

make_incr 3
substitute 3 for n
— let helper (x:1int) = 3 + x 1in helper
— 777

Evaluating First-Class Functions

let make_incr (n:int) : int -> 1nt =
let helper (x:int) : int = n + X 1n
helper

make_incr 3
substitute 3 for n
— let helper (x:1int) = 3 + x 1in helper

— fun (x:int) -> 3 + X Anonymous function value

7 \
keyword “fun”

“->” after arguments
no return type annotation

Named function values

A standard function definition:

let add_one (x:int) : int = x+1

really has two parts:

let add_one : int -> int = fun (x:int) -> x+1

N \]
\ [A—
define a name for create a function value
the value

Both definitions have the same type and behave exactly the same.

Anonymous functions

let add_one (z:int) : 1int
let add_two (z:int) : 1int
let y = twice add_one 3

Z + 1
Z + 2

let w = twice add_two 3
let y = twice (fun (z:int) -> z+1) 3
let w = twice (fun (z:int) -> z+2) 3

Multiple Arguments

We can decompose a standard function definition:

let sum (x : int) (y:int) : int : X + y

into two parts:

let sum = fun (x:int) -> fun (y:int) -> X + y
\]

\
N Y ’
define a variable with
that value

create a function value

Both definitions have the same interface and behave exactly the same:

let sum : int -> int -> int

Partial Application

let sum (x:int) (y:1int) : int = x + Yy

sum 3
— (fun (x:int) -> fun (y:int) -> X + y) 3 definition
— fun (y:int) -> 3 +y substitute 3 for x

What is the value of this expresssion?

let f (x:bool) (y:int) : int =
1f x then 1 else y 1in

f true

1.1

2. true

3. fun (y:int) -> if true then 1 else y
4. fun (x:bool) -> if x then 1 else y

Answer: 3

What is the value of this expression?

let f (g : int -> int) (y: int) :int =
gl+yin

f (fun (x:int) -> x + 1) 3

1.1
2.2
3.3
4.4
5.5

Answer: 5

What is the type of this expression?

let f (g : int -> int) (y: int)
gl+y1in

f (fun (x:int) -> x + 1)

: int =

1.1int

2.1int -> int

3.1int -> int -> int

4. (int -> int) -> int -> int
5.1l1-typed

Answer: 2

What is the type of this expresssion?

[(fun (x:int) -> x + 1);
(fun (x:int) -> x - 1)]

1.1int

2.1nt -> 1int

3.(int -> 1int) list
4.1int list -> int list
5.111 typed

Answer: 3

List transformations

A fundamental design pattern
using first-class functions

Phone book example

type entry = string * int

let phone_book = [("Stephanie"”, 2155559092), ..]

let rec get_names (p : entry list) : string list =
begin match p with

| ((name, num)::rest) -> name :: get_names rest
1 -> [
end

let rec get_numbers (p : entry list) : int list =
begin match p with

| ((name, num)::rest) -> num :: get_numbers rest
1 -> [
end

Can we use first-class functions
to refactor code to share common
structure?

Refactoring

let rec helper (f:entry -> ’b) (p:entry list) : ’b list =
begin match p with
| (Centry::rest) -> f entry :: helper f rest
I [1 -> L[]

end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list)
helper/snd p

/

: 1nt list =

N\

The argument f controls
what happens with the binding at the
head of the list

fst and snd are functions that
access the parts of a tuple:
let fst (x,y) = x
let snd (x,y) =y

Going even more generic

let rec helper (f:entry -> ’b) (p:entry list) : ’b list
begin match p with
| (entry::rest) -> f entry :: helper f rest
I [1 -> L[]

end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list) : int list =
helper snd p

Now let's make it work for all lists,
not just lists of entries...

Going even more generic

let rec helper (f:’a -> ’b) (p:’a list) : ’b list =
begin match p with
| (entry::rest) -> f entry :: helper f rest
I [1 -> L[]

end

let get_names (p : entry list) : string list =
helper fst p

let get_numbers (p : entry list) : int list =
helper snd p

‘a stands for (string*int)

‘b stands for int snd : (string*int) -> int

Transforming Lists

let rec transform (f:'a -> 'b) (1:'a 1ist) : 'b list =
begin match 1 with

1 > [
| h::t -> (f h)::(transform f t)
end

List transformation (a.k.a. “mapping a function across a list”*)

* foundational function for programming with lists
* occurs over and over again
 part of OCaml standard library (called List.map)

Example of using transform:
transform is_engr [“FNCE”;”CIS”;”ENGL”;”DMD”] =
[false;true;false;true]

*confusingly, many languages (including OCaml) use the terminology “map” for the function that transforms
a list by applying a function to each element. Don’t confuse List.map with “finite map”.

let rec transform (f:'a -> 'b) (1:'a 1list) : 'b list =
begin match 1 with

I 0 -> [
| h::t -> (f h)::(transform f t)
end

What is the value of this expresssion?

transform String.uppercase [“a”;“b”;“c”]

1.]

2. [“a”; “b”; “c”]
3. [“A”; “B”; “C”]
4

. runtime error

What is the value of this expresssion?

transform (fun (X:int) -> x > 0)
[0 ; -1; 1; -2]

0;-1; 1; -2]
1]
0; 1]

false; false; true; false]

CL

runtime error

List processing

The ‘fold’ design pattern

Refactoring code, again

* |sthere a pattern in the definition of these two functions?

let rec exists (1 : bool 1ist) : bool =
begin match 1 with

| [] -> false

| h :: t ->h M base case:

end Simple answer when
\ the list is empty

let rec acid_length (1 :
begin match 1 wi

combine step:

| [] -> 0 . |
.. _ : Do something with
éng bt aCld_length t the head of the list

and the recursive call

* Can we factor out that pattern using first-class functions?

CIS120

Abstracting with respect to Base

let rec helper (base : bool) (1 : bool list) : bool =
begin match 1 with

| [] -> base
| h :: t -> h || helper base t
end

let exists (1 : bool list) = helper false 1

let rec helper (base : int) (1 : acid list) : int =
begin match 1 with

| []1 -> base
| h :: t -> 1 + helper base t
end

let acid_length (1 : acid list) = helper 0 1

CIS120

Abstracting with respect to Combine

let rec helper (combine : bool -> bool -> bool)
(base : bool) (1 : bool 1list) : bool =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let exists (1 : bool list) =
helper (fun Ch:bool) (acc:bool) -> h || acc) false 1

let rec helper (combine : acid -> int -> int)
(base : int) (1 : acid 1list) : int =
begin match 1 with

| [] -> base
| h :: t -> combine h (Chelper combine base t)
end

let acid_length (1 : acid list) =
helper (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

CIS120

Making the Helper Generic

let rec helper (combine : ‘a -> ‘b -> ‘b)
(base : ‘b) (1 : ‘a list) : ‘b =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let exists (1 : bool list) =
helper (fun Ch:bool) (acc:bool) -> h || acc) false 1

let rec helper (combine : ‘a -> ‘b -> ‘b)
(base : ‘b) (1 : ‘a list) : ‘b =
begin match 1 with

| [] -> base
| h :: t -> combine h Chelper combine base t)
end

let acid_length (1 : acid list) =
helper (fun (h:acid) (acc:int) -> 1 + acc) 0 1

CIS120

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : 'a list) : 'b =
begin match 1 with

| [] -> base
| X :: t -> combine x (fold combine base t)
end

let exists (1 : bool 1ist) : bool =
fold (fun Ch:bool) (acc:bool) -> h || acc) false 1

let acid_length (1 : acid 1list) : int =
fold (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

- fold (a.k.a. Reduce)
— Like transform, foundational function for programming with lists
— Captures the pattern of recursion over lists
— Also part of OCaml standard library (L1st.fold_right)
— Similar operations for other recursive datatypes (fold_tree)

