Programming Languages
and Techniques
(C1S120)

Lecture 10
February 6t, 2015

Abstract types: sets
Lecture notes: Chapter 10

Announcements

* Homework 3 is available
— due Thursday, Sept. 24t at 11:59:59pm

 Read Chapter 10 of lecture notes

e Midterm 1

— Scheduled in class on Friday, October 2"°
— Contact me if you need to take the make-up exam
— More details to follow!

List Fold

let rec fold (combine: 'a -> 'b -> 'b)
(base:'b) (1 : 'a list) : 'b =
begin match 1 with

| [] -> base
| X :: t -> combine x (fold combine base t)
end

let exists (1 : bool 1ist) : bool =
fold (fun Ch:bool) (acc:bool) -> h || acc) false 1

let acid_length (1 : acid 1list) : int =
fold (fun Ch:acid) (acc:int) -> 1 + acc) 0 1

- fold (a.k.a. Reduce)
— Like transform, foundational function for programming with lists
— Captures the pattern of recursion over lists
— Also part of OCaml standard library (L1st.fold_right)
— Similar operations for other recursive datatypes (fold_tree)

CIS120

How would you rewrite this function

let rec sum (1 : int list) : int =
begin match 1 with

[] >0

| h ::

end

t -> h + sum t

using fold? What should be the arguments for base and

combine?

1. combine is:

base is:

2. combineiis:

base is:

3. combineiis:

base is:

sum can’t be written by with fold. Answer: 2

(fun Ch:1int) (acc:int) -> acc + 1)
0

(fun Ch:1int) (acc:int) -> h + acc)
0

(fun Ch:1int) (acc:int) -> h + acc)
1

How would you rewrite this function

let rec join (l:string list) : string =
begin match 1 with

>

| s :: [] -> s

| s1 :: rest -> s1 A", " A (join rest)
end

using fold? What should be the arguments for base and combine?

1.

combine is:

base is:

combine is:

base is:

combine is:

base is:

join can’t be written by with fold.

(fun (s:string) (acc:string) -> s A “,”Aacc)

€€

(fun (sl:string) (acc:string list) ->
1f acc = s::[] then s else s1 A “,” A acc)

€€

(fun (s:string) (acc:string) -> s)
[]

Answer: 4

Functions as Data

 We’'ve seen a number of ways in which functions can be
treated as data in OCaml

* Present-day programming practice offers many more
examples at the “small scale”:
— objects bundle “functions” (a.k.a. methods) with data
— iterators (“cursors” for walking over data structures)
— event listeners (in GUIs)
— etc.

* The idiom is useful at the “large scale”: Google’s MapReduce
— Framework for transforming (mapping) sets of key-value pairs
— Then “reducing” the results per key of the map
— Easily distributed to 10,000 machines to execute in parallel!

Abstract Collections

Are you familiar with the idea of a set from
mathematics?

1. yes
2. no

In math, we typically write sets like this:
@ {1,2,3} {true,false}
with operations:
SUT for union and
SAT forintersection;
we write x € S for
“x is a member of the set §”

CIS120

A set is an abstraction

e Asetis acollection of data
— we have operations for forming sets of elements
— we can ask whether elements are in a set

 Asetis alotlike a list, except:
— Order doesn't matter A , .
n element’s presence or absence in the
— Duplicates don't matter set is all that matters...

— [t isn't built into OCaml|

e Sets show up frequently in applications

— Examples: set of students in a class, set of coordinates in a

graph, set of answers to a survey, set of data samples from
an experiment, ...

Abstract type: set

A BST can implement (represent) a set

there is a way to represent an empty set (Empty)

there is a way to list all elements contained in the set
(inorder)

there is a way to test membership (lookup)
could define union/intersection (insert and delete)

Order doesn't matter

We create BSTs by adding elements to an empty BST

The BST data structure doesn’t remember what
order we added the elements

Duplicates don't matter

Our implementation doesn’t keep track of how many
times an element is added

BST invariant ensure that each node is unique

BSTs are not the only way to implement
sets

abstract view

1]

Three Example Representations of Sets

Alternate representation:
unsorted linked list.

3::0::1::[]

concrete representation concrete representation

abstract view abstract view

® oS
ox ®

Alternate representation:
reverse sorted array with
index to next slot.

|

3 1/0 X | X

concrete representation

abstract view

®
©
O,

Abstract types (e.g. set)

An abstract type is defined by its interface
and its properties, not its representation.

Interface: defines operations on the type

There is an empty set

There is a way to add elements to a set to make a bigger
set

There is a way to list all elements in a set
There is a way to test membership

Properties: define how the operations
interact with each other

Elements that were added can be found in the set

Adding an element a second time doesn’t change the
elements of a set

Adding in a different order doesn’t change the elements
of a set

Any type (possibly with invariants) that
satisfies the interface and properties can be
a set.

concrete representation

abstract view

®
©
©

A design problem

As a high-school student, Stephanie had the job of reading
books and finding which words, out of a collection of the 1000-
most common SAT vocabulary words, appeared in a particular
book. She enjoyed being paid to read, but she would have
enjoyed being paid to program more. How could she have
automated this task?

What are the important concepts or abstractions for this
problem?

* The list of words that appear in a book
* The set of 1000-most common SAT words
* The set of words from the list that are contained in the set

2. Formalize the Interface

* Suppose we had a generic type of sets:
'a set

 We can formalize the interface for our problem:

3. Write Test Cases

Test cases specify the interface and properties of the necessary abstractions.

let vocah - string set =
@ ["induce"; "crouching"; "reprieve";

"indigent"; "arrogate"; "coalesce";
"temerity"]

'I-et textl — ["_i-"; "-I_OOked"; "upll; llaga_i-nll; llatll;

"the"; "crouching"; "white"; "shape"; "and";
Ilthell; ll_Fu'I-'I-H; Htemerl_i-ty"; llO_Fll; llmyll; llvoyage"]

let te D . bool =
@ findVocab textl vocab)
(set_of_list [.. 1)

)

run_test "findVocab" test OCaml’s = operation may not

be the right implementation

for all representations

4. Implement the Required Behavior

let rec findVocab (text : string list)

(vocab : string set) : 'a set =
begin match text with
| [] -> empty

| hd :: t1 -> if member hd vocab
then add hd (findVocab tl1 vocab)
else findVocab tl1 vocab

end

* Requires set creation and membership test

let empty : 'a set = ..
let add (x: 'a) (s: 'a set) : 'a set = ..
let member (x:'a) (s:'a set) : bool = ..

The set interface in OCaml (a signature)

module type SET = sig
type 'a set

val empty

val add

val member

val equals :
val set_of_list :

- - - - -

QO Q9 Q9 Q9 Q

end

Keyword ‘val’ names values
that must be defined and
their types.

set

-> 'a set -> 'a set
-> 'a set -> bool

set -> 'a set -> bool
list -> 'a set

A module implements an interface

* An implementation of the set interface will look like this:

Name of the module

Signature that it implements

/

¥ —
module ULSet : SET = struct
E* implementations of all the operations *)

ena

Testing (and using) sets

e To use the values defined in the set module use the “dot”
syntax:
ULSet.<member>

* Note: Module names must be capitalized in OCaml|

let s1 = ULSet.add 3 ULSet.empty
let s2 = ULSet.add 4 ULSet.empty
let s3 = ULSet.add 4 sl

let test () : bool = (ULSet.member 3 sl)
;5 run_test "ULSet.member 3 sl1" test

let test () : bool = (ULSet.member 4 s3)
;5 run_test "ULSet.member 4 s3" test

Testing (and using) sets

* Alternatively, use “Oopen” to bring all of the names defined in
the interface into scope.

;5 open ULSet

let s1 = add 3 empty
let s2 = add 4 empty
let s3 = add 4 sl

let test () : bool = (member 3 sl1)
;5 run_test "ULSet.member 3 sl1" test

let test (O : bool = (member 4 s3)
;5 run_test "ULSet.member 4 s3" test

Implementing sets

There are many ways to implement sets.
— lists, trees, arrays, etc.

How do we choose which implementation?

— Depends on the needs of the application...
— How often is ‘member’ used vs. ‘add’ or ‘remove’?
— How big will the sets need to be?

Many such implementations are of the flavor
“a setis a ... with some invariants”

— Asset is a list with no repeated elements.

— Asetis a tree with no repeated elements

— A setis a binary search tree

— Assetis an array of bits, where 0 = absent, 1 = present

How do we preserve the invariants of the implementation?

Abstract types

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants.

* The interface restricts how other parts of the program can
interact with the data.

* Benefits:
— Safety: The other parts of the program can’t break any invariants

— Modularity: It is possible to change the implementation without
changing the rest of the program

Set sighature

mod

end

ule type SET = sig

type 'a set <«

Type declaration has no
“body” — its representation
is abstract!

-> 'a set -> 'a set
-> 'a set -> bool
set -> 'a set -> bool

val empty 'a set

val add 'a

val member 'a

val equals : 'a

val set_of_list : 'a list -> 'a set

Implement the set Module

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * "a * "a tree

Module must define the
type declared in the
signature

type 'a set = 'a tree <

let empty : "a set = Empty

ena

The implementation has to include everything promised by the interface

— It can contain more functions and type definitions (e.g. auxiliary or helper
functions) but those cannot be used outside the module

— The types of the provided implementations must match the interface

Another Implementation

module ULSet : SET =
struct

. A different definition for
type 'a set = 'a list < the type set

let empty : 'a set = []

end

Does this code type check?

;5 open BSTSet
let s1 : int set = Empty

1. yes
2. no

Answer: no, the Empty data constructor is not
available outside the module

CIS120

Does this code type check?

;5 open BSTSet
let s1 : int set

add 1 empty

1. yes
2. no

Answer: yes

CIS120

Does this code type check?

;5 open BSTSet
let s1 : int tree

add 1 empty

1. yes
2. no

Answer: no, add constructs a set, not a tree

CIS120

If a module works correctly and starts with:

;5 open ULSet

will it continue to work if we change that line to:

;3 open BSTSet

assuming that ULSet and BSTSet both implement SET
and satisfy all of the set properties?

1. yes
2. no

Answer: yes (caveat: performance may be different)

CIS120

Summary: Abstract Types

* Different programming languages have different ways of
letting you define abstract types

* At a minimum, this means providing:
— A way to specify (write down) an interface
— A means of hiding implementation details (encapsulation)

e |In OCaml:

— Interfaces are specified using a signature or interface

— Encapsulation is achieved because the interface can omit information
* type definitions
* names and types of auxiliary functions

— Clients cannot mention values not nhamed in the interface

.ml and .mli files

* You’'ve already been using signatures and modules in OCaml.

* Aseries of type and val declarations stored in a file foo.ml1
is considered as defining a signature FOO

* A series of top-level definitions stored in a file foo.ml is
considered as defining a module FOO

foo.mli

type t
val z : t
val f : t -> int

foo.ml

type t = int
let z : £t =0
let f (x:t) : int =

X + 1
test.ml

;3 open Foo

;5 print_int

(Foo.f Foo.z)

module type FOO = sig

type t

val z : t

val f : t -> int
end

module Foo : FOO = struct
type t = int
let z : t =0
let f (x:t) : int =
X + 1
end

module Test = struct
;5 open Foo
;5 print_int
(Foo.f Foo.2z)
end

Files

