Programming Languages
and Techniques
(C1S120)

Lecture 11
September 21st, 2015

Abstract types: Finite Maps



Announcements
My office hours: Tuesday 3:30 - 5:00

* Homework 3
— due Thursday September 24t at 11:59:59pm
— next homework will be available soon

e Midterm 1
— Scheduled in class on Friday, October 2"
— Covers lecture material through Chapter 12
— Review materials (old exams) on course website
— Contact me if you need to take the make-up exam
— More details on Wednesday.



Abstract types

BIG IDEA: Hide the concrete representation of a type
behind an abstract interface to preserve invariants.

* The interface restricts how other parts of the program can
interact with the data.

* Benefits:
— Safety: The other parts of the program can’t break any invariants

— Modularity: It is possible to change the implementation without
changing the rest of the program



Set sighature

The si1g keyword indicates

// an interface declaration
module type SET = sig

end

type 'a set «

Type declaration has no

val empty

val add

val member

val equals

val set_of_list

“body” —its representation
v is abstract!

a set
a-> 'a set -> 'a set

a -> 'a set -> bool

a set -> 'a set -> bool
a list -> 'a set

T~

>~

The interface members are the (only!)
means of manipulating the abstract type.




Implement the set Module

The struct keyword indicates

a module implementation

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * "a * "a tree

Module must define (give a
concrete representation to) the
type declared in the signature

type 'a set = 'a tree .

let empty : "a set = Empty

ena

* The implementation has to include everything promised by the interface

— It can contain more functions and type definitions (e.g. auxiliary or helper
functions) but those cannot be used outside the module

— The types of the provided implementations must match the interface



Abstract vs. Concrete BSTSet

concrete representation

abstract view

®
©
O,

module BSTSet : SET = struct
type 'a tree = ..
type 'a set = 'a tree
let empty : 'a set = Empty
let add (x:'a) (s:'a set) :'a set=
... (*¥ can treat s as a tree *)

end
_____________ -
'-module type SET = sig I
type 'a set
===y val empty : 'a set ===
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the BSTSet module *)
;3 open BSTSet

let s : int set
= add @ (add 3 (add 1 empty))




Another Implementation

module ULSet : SET =
struct

. A different definition for
type 'a set = 'a list < the type set

let empty : 'a set = []

end




Abstract vs. Concrete ULSet

S

0::3::1::[]

concrete representation

abstract view

&
©
©

module ULSet : SET = struct
type 'a set = 'a list
let empty : 'a set = []
let add (x:'a) (s:'a set) :'a set=
x::s (* can treat s as a list *)

end
_____________ -
r:nodule type SET = sig I
type 'a set
===y val empty : 'a set ===
val add : 'a -> 'a set -> 'a set I
| end

(* A client of the ULSet module *)
;3 open ULSet

let s : int set
= add @ (add 3 (add 1 empty))

\

Client code doesn’t change!




Does this code type check?

;5 open BSTSet
let s1 = add 1 empty

1. yes end

module type SET = sig

type 'a set
val empty : 'a set
val add : 'a > 'a set -> 'a set
end
module BSTSet : SET = struct
type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty
end

let 11 = begin match sl with
| Node (_,k,_) -> k
| Empty -> failwith “impossible”

2. ho

Answer: no, add constructs a set, not a tree

CIS120




Does this code type check?

module type SET = sig

type 'a set

val empty : 'a set

val add : 'a -> "a set -> 'a set
end

module BSTSet : SET = struct

type 'a tree =
| Empty
| Node of 'a tree * 'a * 'a tree
type 'a set = 'a tree
let empty : 'a set = Empty
let size (t : 'a tree) : int = ..
end

;5 open BSTSet
let s1 = add 1 empty
let i1l = size sl

1. yes
2. no

Answer: no, cannot access helper functions outside the module

CIS120




How comfortable to you feel with the concept of an
invariant?

1. TotaIIy confused (I have no idea what they are)
2. Somewhat unsure (I can only give an example)
3. It’s beginning to make sense

4. Pretty confident (I understand how they’re used)
5. l've completely got it (I could design my own)

CIS120



Finite Map Demo

Using module signatures to preserve
data structure invariants

finiteMap.ml




Motivating Scenario

e Suppose you were writing some course-management
software and needed to look up the lab section for a

student given the student’s PennKey?
— Students might add/drop the course
— Students might switch lab sections
— Students should be in only one lab section

 How would you do it? What data structure would
you use?



Finite Maps

* A finite map (a.k.a. dictionary), is a collection of bindings from
distinct keys to values.

— Operations to add & remove bindings, test for key membership, look
up a value by its key
« Example:a (string, int) map might map a PennKey
to the lab section.
— The map type is generic in two arguments
* Like sets, finite maps appear in many settings:
— map domain names to IP addresses
— map words to their definitions (a dictionary)

— map user names to passwords
— map game character unique identifiers to dialog trees

CIS120 14




Summary: Abstract Types

* Different programming languages have different ways of
letting you define abstract types

* At a minimum, this means providing:
— A way to specify (write down) an interface
— A means of hiding implementation details (encapsulation)

e |In OCaml:

— Interfaces are specified using a signature or interface

— Encapsulation is achieved because the interface can omit information
* type definitions
* names and types of auxiliary functions

— Clients cannot mention values or types not named in the interface



