Programming Languages
and Techniques
(C1S120)

Lecture 12
September 2319, 2015

Finite Maps; Partiality and Option Types

Announcements

e Homework 3

— Due tomorrow Thursday September 24t at
11:59:59pm

— next homework will be available Monday or Tues.

e Midterm 1

— In class on Friday, October 2"?

* Lastnames A-L Leidy Labs (here)
e Lastnames M-Z Cohen G17

— Covers lecture material through TODAY
— Review materials (old exams) on course website
— Contact me if you need to take the make-up exam

Finite Map signhature

module type MAP = sig

type ('k,'v) map

val
val
val
val
val
val
val

end

empty : ('k,'v) map

add 'k > 'v > ('k,"'v) map -> ('k,"'v) map
remove : 'k -> ('k,'v) map -> ('k,"'v) map
mem . 'k -> ('k,"'v) map -> bool

get 'k > ('k,'v) map -> v

entries : ('k,'v) map -> ('k * 'v) list

equals : ('k,'v) map -> ('k,'v) map -> bool

Summary: Abstract Types

e Different programming languages have different ways of
letting you define abstract types

At a minimum, this means providing:
— A way to specify (write down) an interface
— A means of hiding implementation details (encapsulation)

e |n OCaml:

— Interfaces are specified using a signature or interface

— Encapsulation is achieved because the interface can omit information
* type definitions
* names and types of auxiliary functions

— Clients cannot mention values or types not named in the interface

Which of these is a function that calculates the
maximum value in a list:

let rec list_max (1:'a list) : ’a
begin match 1 with

1. 1 -> []

| h :: t -> max h (list_max t)

end

2. let rec list_max (1:'a list) : ’a
fold max 0 1

let rec list_max (1:’a list) : ‘a

3. begin match 1 with
| h :: t -> max h (list_max t)
end

Answer: 4

4. None of the above

Quiz answer

e list_ maxisn’t defined for the empty list!

let rec list_max (l:'a 1list) : ’a =
begin match 1 with
| [] -> failwith “empty 1ist”
| [h] -> h
| h::t -> max h (list_max t)
end

(* INCORRECT! *)
let 1ist_max (l:'a list) : ’a =
begin match 1 with
| [] -> failwith “empty list”
| h::t -> fold max h t
end

CIS120

Client of list_max

(* string_of_max calls list_max *)
let string_of_max (x:int list) : string =
string_of_int (list_max x)

* Oops! string_of_max will fail if given []

* Not so easy to debug if string_of_max is written by one
person and L1St_max is written by another.

* Interface of list_max is not very informative
val list_max : int list -> 1int

CIS120

Dealing with Partiality*

*A function is said to be partial if it is not defined for all inputs.

Solutions to Partiality: Option 1

Abort the program:
— InOCaml: failwith “an error message”

Whenever it is called, failwith aborts the program and
reports the error message it is given.

This solution to partiality is appropriate whenever you know
that a certain case is impossible.
— Often happens when there is an invariant on a datastructure

— The compiler isn’t smart enough to figure out that the case is
impossible...

— failwith is also useful to “stub out” unimplemented parts of your
program.

This is an instance of a more general mechanism called
“exceptions”

Solutions to Partiality: Option 2

* Return a default or error value
— e.g.define tree max Empty tobe -1
— Error codes used often in C programs
— null used often in Java

* But...
— What if -1 (or whatever default you choose) really is the maximum value?

— Can lead to many bugs if the default or error value isn’t handled properly
by the callers.

— IMPQOSSIBLE to implement generically!

* There is no way to generically create a sensible default value for every
possible type.

* Sir Tony Hoare, Turing Award winner and inventor of null calls it his
“billion dollar mistake”!

e Defaults should be avoided if possible

Optional values

Solutions to Partiality: Option 3

Option Types

* Define a generic datatype of optional values:

type 'a option =
| None
| Some of

a

* A “partial” function returns an option
let list_max (1l:1ist) : int option = ..

e Contrast this with “null”, a “legal” return value of any type

— caller can accidentally forget to check whether null was used; results
in NullPointerExceptions or crashes

CIS120

Example: list_max

A function that returns the maximum value of a list as an
option (None if the list is empty)

let list_max (1:'a list) : 'a option =
begin match 1 with
| [] -> None
| x::tl -> Some (fold max x tl)
end

CIS120

Revised client of list max

(* string_of_max calls list_max *)
let string_of_max (l:int list) : string =
begin match (list_max 1) with
| None -> “no maximum”
| Some m -> string_of_int m
end

« string_of_max will never fail

* The type of list_max makes it explicit that a client must check
for partiality.

val list_max : int list -> int option

CIS120

What is the type of this function?

4

‘a list -> ‘a list
‘a list -> ‘b option
‘a list -> ‘a option

. None of the above

let head (x: ______) =
begin match x with
| [] -> None
| h :: t -> Some h
end
‘alist -> ‘a

Answer: 4

What is the value of this expression?

let head (x: ‘a list) : ‘a option =
begin match x with
| [] -> None
| h :: t -> Some h
end 1in
head [[1]]
1. 1
2. Somel
3. [1]
4. Some [1]
5. None of the above Answer: 4

What is the value of this expression?

let head (x: ‘a list) : ‘a option =
begin match x with

| [] -> None
| h :: t -> Some h
end 1in

[head [1]; head []]

(1;0]
1
[Some 1; None]

[None; None]

Answer: 3

DL

None of the above

Revisiting the MAP interface

get : 'k -> (‘k,’v) map -> ‘v option

