Programming Languages
and Techniques
(C1S120)

Lecture 13
September 28t , 2015

Unit; Sequencing; Mutable State
Chapters 12, 13, 14



Announcements

Midterm 1

— In class on Friday, October 2"¢

e Lastnames A-L Leidy Labs 10 (here)
e Lastnames M-Z Cohen G17

— Covers lecture material through Sept. 23
* Pure, value-oriented programming up to option Types

* Chapters 1—-11 in the UPDATED notes
— Review Session: WEDS evening (details forthcoming)
— Review materials (old exams) on course website
— Contact me if you need to take the make-up exam

* My office hours: TODAY 3:30 - 5:00



Commands, Sequencing and Unit

What is the type of print_string?




Sequencing Commands and Expressions

We can sequence commands inside expressions using *;’

— unlike in C, Java, etc., ;' doesn’t terminate a statement it separates a
command from an expression

let f (x:int) : int =
print_string “f called with ”;
print_string (string_of_int x);
X + X

~

do not use ;" here! note the use of ;" here

The distinction between commands & expressions is artificial.
« print_stringisafunctionof type: string -> unit

e Commands are actually just expressions of type: unit



unit: the trivial type

e Similar to "void" in Java or C

e For functions that don't take any arguments

let f () : 1int = 3 val f : unit -> 1int
lety : int = f QO val y : 1int

* Also for functions that don't return anything, such as testing
and printing functions a.k.a commands:

(* run_test : string -> (unit -> bool) -> unit *)
;5 run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

CIS120



unit: the boring type

* Actually, () is a value just like any other value.

* For functions that don't take any interesting arguments

let f () : 1int = 3 val f : unit -> 1int
lety : int = f QO val y : 1int

e Also for functions that don't return anything interesting, such
as testing and printing functions a.k.a commands:

(* run_test : string -> (unit -> bool) -> unit *)
;5 run_test “TestName” test

(* print_string : string -> unit *)
;; print_string “Hello, world!”

CIS120



unit: the first-class type

* Can define values of type unit

let x : unit = O val x : unit

e Can pattern match unit (even in function definitions)

let z = begin match x with fun O > 3
| O > 4

end

* |s the result of an implicit else branch:

;3 1f z <> 4 then — ;3 1f z <> 4 then
failwith "oops” I failwith "oops”
else )

CIS120



Sequencing Commands and Expressions

« Commands (i.e. expressions of type unit) are useful because
of their side effects: interactions with the external
environment

— e.g. printing output, reading user input, changing the value
of mutable state

let f (x:int) : int =
print_string “f called with ”;
print_string (string_of_int x);
X + X

-

note the use of ;" here
do not use ;’ here! ’

 We can think of ;" as an infix function of type:
unit -> ‘a -> ‘a



CIS120

What is the type of f in the following program:

let f (x:int) =
print_int (x + x)

. unit -> 1int

. unit -> unit

. 1nt -> unit

. 1lnt -> 1int

. f 1s 111 typed

uT WM -




CIS120

What is the type of f in the following program:

let f (x:int) =
(print_int x);
(X + x)

. unit -> 1int

. unit -> unit

. 1nt -> unit

. 1lnt -> 1int

. f 1s 111 typed

uT WM -




Why Pure Functional Programming?

e Simplicity
— small language: arithmetic, local variables,

recursive functions, datatypes, pattern matching,
generic types/functions and modules

— simple substitution model of computation

 Persistent data structures
— Nothing changes; retains all intermediate results Being vs Doing
— Good for version control, fault tolerance, etc.

 Typecheckers give more helpful errors
— Once your program compiles, it needs less testing
— Options vs. NullPointerException

e Easier to parallelize and distribute

— No implicit interactions between parts of the
program.

— All of the behavior of a function is specified by its
arguments

CIS120



e Action at a distance

— allow remote parts of a program to
communicate / share information without

threading the information through all the points
in between

* Data structures with explicit sharing
— e.g. graphs

— without mutation, it is only possible to build
trees — no cycles

» Efficiency/Performance

— some data structures have imperative versions
with better asymptotic efficiency than the best
declarative version

* Re-using space (in-place update)
 Random-access data (arrays)

e Direct manipulation of hardware
— device drivers, etc.

CIS120




Mutable state

CIS120







Immutable Records

* Records are like tuples with named fields:

(* a type for representing colors *) Curly braces

type rgb = {r:int; g:int; b:int;} « ¢//armmdrecord.

(* some example
let red : rgb
let blue : rgb
let green : rgb
let black : rgb
let white : rgb

Semicolons after

rgb values *) record components.

= {r=255; g=0; b=0;}
= {r=0; g=0; b=255;}%
= {r=0; g=255; b=0;}
= 1r=0; g=0; b=0;}
= {r=255; g=255; b=255;}

 The type rgb is a record with three fields: r, g, and b
— fields can have any types; they don’t all have to be the same

 Record values are created using this notation:

{fieldl=vall; field2=valz;..}

CIS120




Field Projection

 The value in a record field can be obtained by using “dot”
notation: record.field

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int;}

(* using 'dot' notation to project out components *)
(* calculate the average of two colors *)
let average_rgb (cl:rgb) (c2:rgb) : rgb =
{ (cl.r + c2.r) / 2;
(cl.g + c2.9) / 2;
(cl.b + c2.b) / 2;}

r
g
b

CIS120




Mutable Record Fields

By default, all record fields are immutable—once initialized,
they can never be modified.

OCaml supports mutable fields that can be imperatively
updated by the “set” command: record.field <- val

note the ‘mutable’ keyword

_—

type point = {mutable x:1int; mufﬁgigz;jint}

let p@ = {x=0; y=0}
(* set the x coord of p@ to 17 *)
;; pO.x <- 17

;5 print_ ine ("p@.x = " A (string_of_int p@.x))

™~

Command that performs
“in-place” update of p0.x

CIS120



Defining new Commands

* Functions can assign to mutable record fields

* Note that the return type of ‘<-"is unit

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)

let shift (p:point) (dx:int) (dy:int) : unit =
p.X <- p.X + dx;
p.y <- p.y + dy

CIS120




type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)

let shift (p:point) (dx:int) (dy:int) : unit =
p.X <- p.X + dX;
p.y <- p.y + dy

What answer does the following function produce when called?

let f (pl:point) : int =
pl.x <- 17;
pl.x

1.17

2. something else

3. sometimes 17 and sometimes something else
4. f isill typed

CIS120




type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)

let shift (p:point) (dx:int) (dy:int) : unit =
p.X <- p.X + dX;
p.y <- p.y + dy

What answer does the following function produce when called?

let f (pl:point) (p2:point) : int =

pl.x <- 17;
p2.xX <- 34;
pl.x

1. 17

2. 34

3. sometimes 17 and sometimes 34
4. f isill typed

CIS120




Issue with Mutable State: Aliasing

e What does this function return?

let f (pl:point) (p2:point) : int =
pl.x <- 17;
p2.xX <- 42;
pl.x

(* Consider this call to f *)
let ans = f p@ p0@

Two identifiers are said to be aliases if they both name the
same mutable record. Inside f, p1, and p2 might be aliased,
depending on which arguments are passed to f.

CIS120




Modeling Computation
with Mutable State



Has this situation
ever happened to

you?
1. yes

2. no

CIS120

MY CODEDOESNTWORK
T —

S o

| HAVE NO:IDERWHY
. MY[CODEWORKS
s 4

-

M. £

.
¢ ‘. -
- .‘—'\
II \ \ ‘
T — ;

W0J"9Y96 VI




Have you used the substitution model to reason about how

functions evaluate?

filter is_even [1;2]
— 1f is_even 1 then 1 ::
else filter is_even [Z2]

— 1f false then 1 ::
else filter is_even [Z2]

— filter 1is_even [Z]

— 1if is_even 2 then 2 ::
else filter is_even []

— 2 :: filter 1is_even []
— 2 [

filter is_even [2]

filter is_even [2]

filter is_even []

yes, every single step

yes, but skipping some steps
no, it seems useless to me
what is the substitution model?

= U0 =

CIS120

let filter (f : "a -> bool)
(1 : "a list) : "a list =
begin match 1 with
I [] -> []
| hd :: t1l ->
if f hd then hd ::
else filter f tl
end

filter f tl




Mutable Records

Mutable (updateable) state means that the locations of
values becomes important.

type point = {mutable x:int; mutable y:int}

let pl : point = {x=1; y=1;}
let p2 : point = pl
let ans : 1nt = p2.x <- 17; pl.x

The simple substitution model of program evaluation breaks
down — it doesn’t account for locations

We need to refine our model of how to understand programs.



Stack Machine

* Three “spaces”

— workspace Workspace Stack Heap
* the expression the computer is
currently working with
let x =
— stack

« temporary storage for Let bindings
and partially simplified expressions

— heap
» storage area for large data structures
* |[nitial state:
— workspace contains whole program
— stack and heap are empty

 Machine operation:

— In each step, choose next part of the
workspace expression and simplify it

— Stop when there are no more
simplifications



Abstract Stack Machine

The abstract stack machine operates by simplifying the expression in
the workspace...
... but instead of substitution, it records the values of variables on the stack

... values themselves are divided into primitive values (also on the stack) and
reference values (on the heap).

For immutable structures, this model is just a complicated way of
doing substitution

... but we need the extra complexity to understand mutable state.

We'll go through examples here, read Chapter 14 of the lecture notes
for general rules



Values and References

A value is either:
* aprimitive value like an integer, or,
* areference to a location in the heap

A reference is the address of a piece of data in the heap. We
draw a reference value as an “arrow”:

— The start of the arrow is the reference itself (i.e. the address).
— The arrow “points” to the value located at the reference’s address.

Stack Heap

This is a reference Cons 3 Nil
value .

(the arrow itself). _Itpoints to This reference value
this heap location points to the heap

containing a Cons cell location of a Nil cell



References as an Abstraction

* Inareal computer, the memory consists of an array of 32-bit
words, numbered 0 ... 232-1 (for a 32-bit machine)
— Areference is just an address that tells you where to look up a value
— Data structures are usually laid out in contiguous blocks of memory

— Constructor tags are just numbers chosen by the compiler
e.g. Nil =42 and Cons =120120120

Addresses 32-bit Values

0
1 ..
The “real” 2 4294967291 , How we
heap. 3 ] picture it.
L :
4294967290 . :
4294967291 120120120 Cons | 3
4294967292 3 N
4294967293 4294967295 :
4294967294 . : |
4294967295 42 Nil




