Programming Languages
and Techniques
(C1S120)

Lecture 18
October 15t |, 2015

Desighing a GUI Library

Announcements

e HWS5: GUI & Paint

— Available on the web site
— Due Thursday, October 22 at 11:59pm

Where we’re going...

e HW 5: Build a GUI library and client application from scratch
in OCaml

e Goals:

— Apply everything we’ve seen so far to do some pretty
serious programming

— Practice with first-class functions and hidden state
— lllustrate the event-driven programming model

— Give you a feel for how GUI libraries (like Java’s Swing)
work

— Bridge to object-oriented programming

putting objects to work

Building a GUI and GUI Applications

[NON) '\ OCaml graphics

|O Pointl |© Line| IO Ellipse| |o Text| Thick lines| |Undo| lEluit|

E— S OEEE008 e o

Text buffer:|CIS 120

Have you ever used a GUI library (such as Java’s Swing) to
construct a user interface?

1. Yes
2. No

Step #1: Understand the Problem

* We don’t want to build just one graphical application: we
want to make sure that our code is reusable.

 What are the concepts involved in GUI libraries and how do
they relate to each other?

 How can we separate the various concerns on the project?

Designing a GUI library

 OCaml’s Graphics library provides very simple primitives for:
— Creating a window
— Drawing various shapes: points, lines, text, rectangles, circles, etc.

— Getting the mouse position, whether the mouse button is pressed,
what key is pressed, etc.

— See: http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html

* How do we go from that to a functioning, reusable GUI
library?

Step 2, Interfaces: Project Architecture®

*Note: Subsequent program snippets are color-coded according to this diagram.

Application \ --- :

Paint
GUI Eventloop Widget
Library
Gcetx

Native
graphics
library

OCaml’s Graphics Module (graphics.cma)

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Step 2, Interfaces: Project Architecture®

*Note: Subsequent program snippets are color-coded according to this diagram.

Application oo omnooosososssosoosioooosoooooooooooooo :
\ Paint

’ Eventloop Widget
Gcetx

OCaml’s Graphics Module (graphics.cma)

Native

. —
graphics
library

—

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

10

GUI terminology — Widget*

Basic element of GUIs : buttons, checkboxes, windows,
textboxes, canvases, scrollbars, labels

* All have a position on the screen and know how to display
themselves

 May be composed of other widgets (for layout)

* Widgets are often modeled by objects

— They often have hidden state (string on the button, whether the
checkbox is checked)

— They need functions that can modify that state

*Each GUI library uses its own naming convention for what we call “Widget”. Java’s Swing calls
them “Components”; iOS UIKit calls them “UlViews”; WINAPI, GTK+, X11’s widgets, etc....

GUI terminology - Eventloop

* Main loop of any GUI application

let run (w:widget) : unit =
Graphics.open_graph ""; (* open a new window *)
Graphics.auto_synchronize false;

let rec loop () : unit =
Graphics.clear_graph ();

repaint w;

Graphics.synchronize (); (* force window update *)

wait for user input (mouse movement, key press)
inform w about the input so widgets can react to it;

loop () (* tail recursion! *)
in
loop (O

* Takes “top-level” widget w as argument. That widget contains all others in the
application.

12

Container Widgets for layout

(1T O

let color_toolbar : widget = hlist

[color_button black; spacer; hlist is a container widget.
color_button white; spacer; It takes a list of widgets and
color_button red; spacer; turns them into a single one
color_button green; spacer; by laying them out
color_button blue; spacer; horizontally.
color_button yellow; spacer;
color_button cyan; spacer;

color_button magenta]

paint.ml

* Challenge: How can we make it so that the functions that
draw widgets (buttons, check boxes, text, etc.) in different
places on the window are location independent?

Challenge: Widget Layout

* Widgets are “things drawn on the screen”. How to make
them location independent?

* |dea: Use a graphics context to make drawing primitives
relative to the widget’s local coordinates.

Paint.ml

Application \ --- :

q—

The graphics
context
isolates the
widgets from
the Graphics
module.

GUI Eventloop. Widget.ml

Library
Getx.ml

B |

Native »
graphics
library

OCaml’s Graphics Module (graphics.cma)

14

GUI terminology — Graphics Context

* Wraps OCaml Graphics library; puts drawing operations “in
context” : ——

* Translates coordinates
— Flips between OCaml and
“Standard coordinates” so origin
is top-left
— Translates coordinates so all
widgets can pretend that

they are at the origin

* Aggregates information about the way things are drawn

— foreground color
— line width

15

Graphics Contexts

Absolute (Flipped OCaml)
(0,0)

widget-local
0,0)
(X,y T
widget h
e W]

A graphics context gctx represents a position within the window, relative to which
the widget-local coordinates should be interpreted. We can add additional context
information that should be “inherited” by children widgets (e.g. current pen color).

17

Module: Gctx

Contextualizes graphics drawing operations

Module: Widgets

Building blocks of GUI applications

see simpleWidget.ml

swdemo.ml

s X] Caml graphics

|Hello lWorld

20

Simple Widgets

(* An 1interface for simple GUI widgets *)
type widget = {

repaint : Gctx.gctx -> unit;

size : unit -> (int * 1nt)

* You can ask a simple widget to repaint itself.

* You can ask a simple widget to tell you its size.

* Both operations are relative to a graphics context

Widget Examples

simpleWidget.ml|

(* A simple widget that puts some text on the screen *)

let label (s:string) : widget =

{
repaint = (fun (g:Gctx.gctx) -> Getx.draw_string g (0,0) s);
size = (fun (O -> Gctx.text_size s)

}

simpleWidget.ml

(* A "blank" area widget -- 1t just takes up space *)
let space ((x,y):int*int) : widget =
{
repaint = (fun (_:Gctx.gctx) >);
size = (fun OO -> (x,y))
ks

The canvas Widget

* Region of the screen that can be drawn upon
e Has a fixed width and height

 Parameterized by a repaint method

— Use the Gcetx drawing routines to draw on the canvas

simpleWidget.ml
let canvas ((w,h):int*int) (repaint: Gctx.gctx -> unit) : widget =

{

repaint = repaint;
size = (fun O -> (w,h))

}

Nested Widgets

Containers and Composition

The Border Widget Container

0 (W's width +4) -1

123 .
IIIIIIIIIIIIIIIIIIIIIIIII=

0
translate |_4-§
the Getx | 2

3

W'S

o
o
=
N height
o
o
u
u

EREEEEEED
=

(wsheight +4) - 1 S NN

w’s width

let b = border w

 Draws a one-pixel wide border around contained widget w

* b’s sizeis slightly larger than w’s (+4 pixels in each dimension)
* b’s repaint method must call w’s repaint method

e When b asks w to repaint, b must translate the Getx.t to (2,2) to account for the
displacement of w from b’s origin

The Border Widget

simpleWidget.ml

let border (w:widget):widget =

{

repaint = (fun (g:Gctx.gctx) ->
let (width,height) = w.size () in -
let x = width + 3 1in
let y = height + 3 1in
Getx.draw_line g (0,0) (x,0); ~ | Draw the border
Getx.draw_line g (0,0) (0,y);
Getx.draw_line g (x,0) (x,y);
Getx.draw_line g (0,y) (X,Yy); ~

Display the interior

let g = Getx.translate g (2,2) 1in
w.repaint g); :F

size = (fun O >
let (width,height) = w.size () in
(width+4, height+4))

¥

26

The hpair Widget Container

translate Gcetx
to repaint w2

wl
h’s

w2 Pheight

L J
U

h’s width
« let h = hpair wl w2

* Creates a horizontally adjacent pair of widgets

* Aligns them by their top edges
— Must translate the Getx when repainting the right widget

* Size is the sum of their widths and max of their heights

The hpair Widget

simpleWidget.ml

let hpair (wl: widget) (w2: widget) : widget =
{
repaint = (fun (g: Gctx.gctx) ->
let (x1, _) = wl.size () 1in begin

wl.repaint g;
wZ.repaint (Gctx.translate g (x1,0))
(* Note translation of the Gctx *)

end);

size = (fun QO > Translate the Getx
let (x1, yl1) = wl.size () 1in to shift w2’s position
let (x2, y2) = w2.size () in relative to widget-local
(x1 + x2, max yl y2)) origin.

28

Did you attend lecture today?

1. Yes

