Programming Languages
and Techniques
(C1S120)

Lecture 19
October 16, 2015

GUI Library Design

Announcements

HWO06: GUI programming is available
— Due: THURSDAY OCT. 22 at 11:59:59pm
— Graded manually

e Submission only checks for compilation, no auto tests
* Won’t get scores immediately
* Only LAST submission will be graded

— This project is challenging:
* Requires working with multiple levels of abstraction.
* Managing state in the paint program is a bit tricky.

putting objects to work

Project Architecture*

*Note: Subsequent program snippets are color-coded according to this diagram.

Application A St i :
\ Paint

—

GUI Eventloop Widget
Library

Gcetx
-

Nativg — OCaml’s Graphics Module (graphics.cma)
graphics
library

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

What code produces the following picture?

Hello World

border (label "Hello World”)

border (hpair (label "Hello") (label "World"))

hpair (label "Hello")
(Chpair (space (10,10)) (label "World"))

border Chpair (border (label "Hello"))
Chpair (space (10,10))
(border (label "World"))))

Widget Hierarchy Pictorially

swdemo.ml

(* Create some simple label widgets *)
let 11 = label "Hello"
let 12 = label "World"

(* Compose them horizontally, adding some borders *)

let h = border Chpair (border 11)
(hpair (space (10,10)) (border 12)))

border
!
hpair
e/,,/:”‘<:* Hello World
border hpair
! /\
label space border On the screen

¥

Widget tree label

Drawing: Containers

Container widgets propagate repaint commands to their children:

|
borljer .repaint g
!

hpéik .repaint gl Hello World
border hpair Mepaint g2
label space borden | .repaint g3
label ¢ .repaint g4
Widget tree gl = Getx.translate g (2,2) On the screen

g2 = Gcetx.translate g1 (hello_width,0)
g3 = Gcetx.translate g2 (space_width,0)
g4 = Gcetx.translate g3 (2,2)

Events and Event Handling

Project Architecture

Application PSSR O R C R S CU O S RT ST T N T IS T T CTTE ST TS eren: :
\ Paint

GUI Eventloop Widget
Library
Gcetx
Native OCaml’s Graphics Module (graphics.cma)
graphics
library

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Demo: lightswitch.ml

Putting it all together.

lightbulb demo

space label, with border

| NON X\ OCaml graphics
o four]
canvas
Clicking here

makes the “lightbulb” turn on
and changes label text

O O % OCaml graphics
|DFF|QUIT|

_

Clicking again
makes it turn back off

User Interactions

* Problem: When a user moves the mouse, clicks the button, or
presses a key, the application should react. How?

swdemo.ml
let run (w:widget) : unit =
Gctx.open_graphics (); (* open graphics window *)
let g = Gectx.top_level in
w.repaint g; (* repaint the widget once *)
Graphics.synchronize (Q); (* force window update *)

ignore (Graphics.read_key ()) (* wait for a keypress *)

GUI terminology - Eventloop

let run (w:widget) : unit =
Gctx.open_graphics ();
let g = Gctx.top_level 1in

let rec loop () : unit =
Graphics.clear_graph ();

Graphics.synchronize (); (* force window update *)

wait for user input (mouse movement, key press)

inform w about the input so widgets can react to it;

loop O (* tail recursion! *)
in

loop ()

17

Solution: The Event Loop

eventloop.ml

let run (w:Widget.t) : unit =
Gctx.open_graphics ();
let g = Gctx.top_level 1in

let rec loop () =
Graphics.clear_graph ();
w.repaint g;
Graphics.synchronize ();

Events

gext.mli

type event

val wait_for_event : unit -> event

type event_type
| KeyPress of
| MouseDown
| MouseUp
| MouseMove
| MouseDrag

val event_type :
: event -> gctx -> position

val event_pos

char (* User pressed a key
(* Mouse Button pressed, no movement
(* Mouse button released, no movement
(* Mouse moved with button up
(* Mouse moved with button down

event -> event_type

*)

*)
*)

The graphics context translates the location
of the event to widget-local coordinates

Reactive Widgets

widget.mli
type t = {
repaint : Gctx.gctx -> unit;
size : unit -> Gctx.dimension;

handle : Gctx.gctx -> Gectx.event -> unit (* NEW! *)
ks

* Widgets have a “method” for handling events
* The eventloop waits for an event and then gives it to the root widget

* The widgets forward the event down the tree, according to the
position of the event

Event-handling: Containers

Container widgets propagate events to their children:

/

border

l

label

Widget tree

User clicks,
generating
’ event e
borljer handlege /
; v
hp}ﬂk .handle gl e Hello 1d
hpair Nhandle g2 e
Space border| | .handle g3 e
label ¢ handle g4 e

On the screen

Routing events through container
widgets

Event Handling: Routing

* When a container widget handles an event, it passes the event to the
appropriate child

* The Gctx.gctx must be translated so that the child can interpret the event
in its own local coordinates.

widget.ml

let border (w:widget):widget =
{ repaint = ..;
size = ..;
handle = (fun (g:Gctx.gctx) (e:Gctx.event) ->
w.handle (Gctx.translate g (2,2)) e);

Consider routing an event through an hpair widget
constructed by:

let hp = hpair wl w2

The event will always be propagated either to wl or w2.

1. True
2. False

Dropping Events in an HPair

Route to Route to

W "\\)‘ // W

h’'s
w2 / height

03

Drop this 4/7’

event l ——————————————— =
|

h’s width

 There are three cases for routing in an hpair.

* Aneventin the “empty area” should not be sent to either wl
or w2.

Routing events through hpair widgets

 The event handler of an hpair must check to see whether the event should
be handled by the left or right widget.

— Check the event’s coordinates against the size of the left widget

— If the event is within the left widget, let it handle the event

— Otherwise check the event’s coordinates against the right child’s

— If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gectx.gctx) (e:Gectx.event) ->
if event_within g e (wl.size g)
then wl.handle g e
else
let g = (Getx.translate g (fst (wl.size g), @)) 1in
if event_within g e (W2.s1ize g)
then w2.handle g e

else)

Stateful Widgets

How can widgets react to events?

A stateful Label Widget

let label (s: string) : widget =
let r = { contents = s } 1in
{ repaint =

(fun (g: Gectx.gctx) ->
Gctx.draw_string g (0,0) r.contents);

handle = (fun _ _ -> ());

size = (fun (O ->
Gctx.text_size r.contents)

The label “object” can make its string mutable. The “methods” can
encapsulate that string.

But what if the application wants to change this string in response to an
event?

A stateful Label Widget

widget.ml

type label_controller = { set_label: string -> unit }

let label (s: string) : widget * label_controller =
let r = { contents = s } 1in

({ repaint
g gctx
draw_string g r.contents
handle -
size

text_size r.contents

¥

{,set_label = fun (s: string) -> r.contents <- s })

A controller gives access to the shared state.
— e.g.the label_controller object provides a way to set the label

Event Listeners

How to react to events in a modular way?

Notifiers

* A notifier is a container widget that adds event listeners to a
node in the widget hierarchy.

 The event listeners “eavesdrop” on the events flowing through the
node
— The event listeners are stored in a list

— They react in order, if one of them handles the event the later ones do
not hear it

— If none of the listeners handle the event, then the event continues to
the child widget

* List of event listeners can be updated by using a notifier_controller

Event Listeners

Widgets may want to react to many different sorts of events

Example: Button

— button click: changes the state of the paint program and button label
— mouse movement: tooltip? highlight?

— key press: provide keyboard access to the button functionality?

These reactions should be independent

— Each sort of event handled by a different event listener
(i.e. a first-class function)

— Reactive widgets may have several listeners to handle a triggered event
— Listeners react in sequence, all have a chance to see the event

A notifier is a container widget that adds event listeners to a node in the
widget hierarchy

Note: this way of structuring event listeners is based on Java’s Swing
Library design (we use Swing terminology).

Listeners

widget.ml

type event_listener = Gctx.gctx -> Gectx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit)
: event_listener =
fun (g:Gctx.gctx) (e: Gectx.event) ->
1f Gctx.event_type e = Gctx.MouseDown
then action ()

Notifiers and Notifier Controllers

widget.ml
type notifier_controller =
{ add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
let listeners = { contents = [] } 1in
{ repaint = w.repaint;
handle =

(fun (g: Gectx.gctx) (e: Gectx.event) ->
List.iter (fun h -> h g e) listeners.contents;

w.handle g e);

size = w.slze Loop through the list
s . of listeners, allowing
{ add_event_listener = each one to process
fun (newl: event_listener) -> the event. Then pass
listeners.contents <- :

newl :: listeners.contents theeventtothechnq.

The notifier_controller allows
new listeners to be added to

the list.

Listeners and Notifiers Pictorially

|
bor‘jer
{
hpsk\
/
border hpair
!
label space borde
notifie

Widget tree

/‘

User clicks,
generating
event e

/

Hello

&
Wil 1d

11::12 :: I3\:: []

l(\l@sb

label

On the screen

Buttons (at last!)

widget.ml
(* A text button *)
let button (s: string) : widget
* label_controller
* notifier_controller =

let (w, 1c) = label s 1in
let (W', nc) = notifier w in
(w', 1c, nc)

* A button widget is just a label wrapped in a notifier

 Add a mouseclick_listener to the button using the
notifier_controller

e (For aesthetic purposes, you can but a border around the
button widget.)

