Programming Languages
and Techniques
(C1S120)

Lecture 21
October 215, 2015

Transition to Java

Announcements

* HWS5: GUI & Paint
— Due Tomorrow, October 22" at 11:59pm

e HWS6: Java Programming (Pennstagram)

— Available soon
— Due: Thursday, October 29t at 11:59pm

e Midterm 2

— Friday, November 6t
— In class
— Details to follow

OO terminology

Object: a structured collection of fields (aka instance
variables) and methods

Class: a template for creating objects

The class of an object specifies...
— the types and initial values of its local state (fields)

— the set of operations that can be performed on the object
(methods)

— ohe or more constructors: code that is executed when the
object is created (optional)

Every (Java) object is an instance of some class

Objects in Java

public class Counter {

}

private int r; instance variable

public Counter) {
r =0,
}

public int inc O {
r=r+1;
return r;

}

public int dec OO {
r=r-1;
return r;

}

class declaration

class name /

constructor

methods

/ object creation and use

public class Main {

public static void

main (String[] args) { constructor
invocation

Counter ¢ = new Counter();

System.out.printin(c.inc());

CIS120

} method call

Creating & Using Objects

Declare a variable to hold a Counter object
— Type of the object is the name of the class that creates it

Invoke the constructor for Counter to create a Counter
instance with keyword "new" and store it in the variable

Counter ¢ = new Counter();

Invoke the methods of an object instance using "dot"

c.1ncQ);

What is the value of ans at the end of this program?

Counter x
x.1inc(Q);
int ans = x.inc(Q);

new Counter();

1. 1
2. 2
3. 3
4. NullPointerException

Answer: 2

public class Counter {
private int r;

public Counter () {
r=0;
}

public int inc O {
r=r + 1;
return r;

}

What is the value of ans at the end of this program?

= Y L

Counter x;
x.incQ); _
int ans = x.1inc(Q);

ZU)NH

ullPointerException

Answer: NPE

public class Counter {
private int r;

public Counter () {
r=0;
}

public int inc O {
r=r+1;
return r;

}

What is the value of ans at the end of this program?

Counter x = new Counter();
x.1inc(Q);)
Counter y = x; public class Counter {
y.incQ); . .
int ans = x.incQ); private int r;
1. 1 public Counter () {
2. 2 r=0;
3. 3 }
4. NullPointerException public int inc O {
r=r + 1;
return r;
}
ks

Answer: 3 x and vy are aliases

Constructors with Parameters

Constructor methods can take

public class Counter {
parameters

private int r;
Constructor must have the same

public gounter (int r@) { name as the class
, r = ro;
puelicri:‘-tl?nc O A1 object creation and use
y return r; public class Main {
pubLic it dec O { P i Cotringl] args) { mvocation.
! return r; Counter ¢ = new Counter(3);
} System.out.printin(c.inc());
ks
ks

Mutability

* Every Java variable is mutable

Counter ¢ = new Counter(2);
c = new Counter(4);

* AlJava variable of reference type can also contains the special
value “null”

Counter ¢ = null;

Note:
Single = for assignment
Double == for reference equality testing

Null

At any time, a Java variable of reference type can contain
either “null” or a pointer into the heap
— i.e., aJava variable of reference type "T" is like an OCaml variable of

type "T option ref"
— The dereferencing of the pointer and the check for “null” are implicitly
performed every time a variable is used

let f (co : counter option ref) : int = class Foo {
begin match co.contents with public int f (Counter c¢) {
| None -> return c.incQ);
failwith "NullPointerException” }
| Some ¢ -> }
c.inc(O)
end

* If null value is used as an object (i.e. with a method call) then
a NullPointerException occurs

Explicit vs. Implicit Partiality

OCaml variables

Cannot be changed once created,
must use mutable record

type 'a ref = { mutable contents: 'a }
let x counter () }

;; X.contents <- counter ()

{ contents =

Cannot be null, must use options

let y = { contents = Some (counter (O)}

;5 y.contents <- None

Accessing the value requires
pattern matching

)

33 begin match y.contents with

| None -> failwith "NPE"
| Some ¢ -> c.inc ()

end

Java variables

Can be assigned to after initialization

Counter x = new Counter ();

x = new Counter Q;

Can always be null

Counter y = new Counter ();

y = null;

Check for null is implicit whenever a
variable is used

y.incQ;

If null is used as an object
(i.e. with a method call) then a
NullPointerException occurs

12

The Billion Dollar Mistake

"I call it my billion-dollar mistake. It was the invention —
of the null reference in 1965. At that time, | was
designing the first comprehensive type system for
references in an object oriented language (ALGOL W).
My goal was to ensure that all use of references should
be absolutely safe, with checking performed
automatically by the compiler. But | couldn't resist the
temptation to put in a null reference, simply because it
was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage
in the last forty years. "

Sir Tony Hoare, QCon, London 2009

CIS120 13

Encapsulating local state

public class Counter { — ris private

el -

public Counter () { constructorand
r =0, methods can

} refertor

private int r;

public int inc OO {

r=r + 1;
, return 3 public class Main { | oo PIET
pitic nt e O ¢ P e 1
} return r; Counter c¢ = new Counter();
} System.out.printin(c.inc());
1 method call
CIS120 } 14

Encapsulating local state

* Visibility modifiers make the state local by
controlling access

* Basically:
— . accessible from anywhere in the program
— . only accessible inside the class

* Design pattern — first cut:
— Make all fields private
— Make constructors and non-helper methods public

(There are a couple of other protection levels — protected and
“package protected”. The details are not important at this point.)

Java Core Language

differences between OCaml and Java

Expressions vs. Statements

« OCamlis an expression language
— Every program phrase is an expression (and returns a value)

— The special value () of type unit is used as the result of expressions
that are evaluated only for their side effects

— Semicolon is an operator that combines two expressions (where the
left-hand one returns type unit)

* Javais a statement language

— Two-sorts of program phrases: expressions (which compute values)
and statements (which don’t)

— Statements are terminated by semicolons
— Any expression can be used as a statement (but not vice-versa)

Types

e Asin OCaml, every Java expression has a type

* The type describes the value that an expression computes

Expression form Example Type

Variable reference X Declared type of variable
Object creation new Counter () Class of the object
Method call c.inc() Return type of method
Equality test X==y boolean

Assignment x=5 don’t use as an expression!!

Type System Organization

OCaml

Java

primitive types
(values stored
“directly” in the
stack)

structured types
(a.k.a. reference
types — values
stored in the heap)

generics

abstract types

int, float, char, bool, ...

tuples, datatypes, records,
functions, arrays

(objects encoded as records
of functions)

‘a list

module types (signatures)

int, float, double, char, boolean,

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are a
special case of objects)

List<A>

interfaces
public/private modifiers

Arithmetic & Logical Operators

equality test
inequality
comparison

and string concatenation)

subtraction (and Utia

multiplication

division

remainder (modulus)

logical “not”

logical “and” (short-circuiting)

logical “or” (short-circuiting)

New: Operator Overloading

 The meaning of an operator is determined by the types of
the values it operates on
— Integer division
4/3 =1
— Floating point division
4.0/3.0=>1.3333333333333333

— Automatic conversion
4/3.0 = 1.3333333333333333

* Overloading is a general mechanism in Java

— we’ll see more of it later

Equality

like OCaml, Java has two ways of testing reference types for
equality:

— “pointer equality” _ :
P a Y every object provides an “equals”

0l ==02 method that “does the right thing”
— “deep equality” depending on the class of the
ol.equals(02) object

Normally, you should use == to compare primitive types and
“.equals” to compare objects

Strings

String is a built in Java class

Strings are sequences of characters
""" "Mount Fuji" "3 Stooges" "E=XLU"

+ means String concatenation (overloaded)
"3" + " " + "Stooges" = "3 Stooges"

Text in a String is immutable (like OCaml)
— but variables that store strings are not

— String x = "0Caml";

— String y = Xx;

— Can't do anything to X so that y changes

The .equals method returns true when two strings
contain the same sequence of characters

What is the value of ans at the end of this program?

String x = "CIS 120";
String z = "CIS 120";
boolean ans = x.equals(z);

1. true
2. false
3. NullPointerException

Answer: true
This is the preferred method of comparing strings.

What is the value of ans at the end of this program?

String x1 = "CIS ";
String x2 = "120";
String x = x1 + x2;
String z = "CIS 120";
boolean ans = (X == z);

1. true
2. false
3. NullPointerException

Answer: false
Even though x and z both contain the characters “CIS 1207,
they are stored in two different locations in the heap.

What is the value of ans at the end of this program?

String x = "CIS 120";
String z = "CIS 120";
boolean ans = (X == z);
1. true
2. false

3. NullPointerException

Answer: true(!)
Why? Because strings are immutable, two identical

strings that are known when the program is compiled can be
aliased.

Moral

Always use sl.equals(s2) to

compare strings!

You almost always want to compare
strings with respect to their content, not
where they are allocated in memory...

(But be warned: s1 might be null!)

Style: naming conventions

Kind Part-of- Example
speech
class noun RacingCar
(mutable) field, noun initialSpeed
variable
(immutable) field, noun MILES PER_GALLON
variable
method verb shiftGear

Identifiers consist of alphanumeric characters and _ and cannot
start with a digit

The larger the scope, the more informative the name should be

Conventions are important: variables, methods and classes can
have the same name

Style: naming conventions

public class Turtle {
private Turtle Turtle;
public Turtle() { }

public Turtle Turtle (Turtle Turtle) {
this.Turtle = Turtle;
return this.Turtle;

}

http://www.cis.upenn.edu/~cislxx/resources/codingStyleGuidelines.html

