Programming Languages
and Techniques
(C1S120)

Lecture 25
Oct 30, 2015

Inheritance and Dynamic Dispatch

Announcements

* Midterm 2 is Friday, November 6t in class
e Lastnames A-L Leidy Labs 10 (here)
e Lastnames M-Z Cohen G17

* Coverage:
— Mutable state (in OCaml and Java)
— Objects (in OCaml and Java)
— ASM (in OCaml and Java)
— Reactive programming (in Ocaml)
— Arrays (in Java)
— Subtyping & Simple Extension (in Java)

e Review Session: TBA

Subtypes and Supertypes

* An interface represents a point of view about an object

e Classes can implement multiple interfaces

interfaces
Displaceable Area supertypes
classes implement
interfaces
Point Circle Rectangle subtypes

classes

Types can have many different supertypes / subtypes

1. Interface extension

2. Class extension (Simple inheritance)

Interface Extension

Build richer interface hierarchies by extending existing

interfaces.

public interface Displaceable {
double getX();
double getY();
vold move(double dx, double dy);

h

public interface Area {
double getArea();

h

public interface Shape extends Displaceable, Area {

Rectangle getBoundingBox();
h

The Shape type includes all
the methods of Displaceable
and Area, plus the new
getBoundingBox method.

Note the use of the “extends”
keyword.

Interface Hierarchy

class Point implements Displaceable {

Displaceable Area // omitted
;
~. ’ +
RSN // class Circle implements Shape {
S v .. // omitted
Shape ilass Rectangle implements Shape {
1
— T .. // omitted

Point Circle Rectangle }

* Shape is a subtype of both Displaceable and Area.

e Circle and Rectangle are both subtypes of Shape, and, by
transitivity, both are also subtypes of Displaceable and Area.

 Note that one interface may extend several others.

— Interfaces do not necessarily form a tree, but the hierarchy has no
cycles.

Interface Extension Demo

See: Shapes.zip

Class Extension: Inheritance

* (lasses, like interfaces, can also extend one another.
— Unlike interfaces, a class can extend only one other class.

* The extending class inherits all of the fields and methods of its superclass,
and may include additional fields or methods.

— This captures the “is a” relationship between objects (e.g. a Car is a Vehicle).

— Class extension should never be used when “is a” does not relate the subtype
to the supertype.

class D {

private int x;

private int y;

public int addBoth() { return x + y; }
ks

class C extends D { // every C1is a D
private int z;
public int addThree() {return (addBoth() + z); }

}

Simple Inheritance

In simple inheritance, the subclass only adds new fields or
methods.

Use simple inheritance to share common code among related
classes.

Example: Circle, and Rectangle have identical code for getX(),

getY(), and move() methods when implementing
Displaceable.

Subtyping with Inheritance

Displaceable Area
Displaceablelmpl ~
PN Shape
1 \

Point Circle Rectangle
-Type Cis a subtype of D if D is reachable from C
by following zero or more edges upwards in the
------- Extends .
hierarchy.
Implements
- e.g. Circle is a subtype of Area, but Point is not

Example of Simple Inheritance

See: Main2.java

Inheritance: Constructors

e Contructors cannot be inherited (they have the wrong names!)
— Instead, a subclass invokes the constructor of its super class using the keyword ‘super’.

— Super must be the first line of the subclass constructor, unless the parent class
constructor takes no arguments, in which it is OK to omit the call to super (it is called
implicitly).

class D {
private int x;
private int y;
public D (int initX, int initY) { x = initX; y = initY; }
public int addBoth() { return x + y; }
¥

class C extends D {
private int z;
public C (int 1nitX, int initY, int initZ) {
super(initX, initY);
z = 1nitZ;
¥
public int addThree() {return (addBoth() + z); }

Other forms of inheritance

e Java has other features related to inheritance (some of which
we will discuss later in the course):

— A subclass might override (re-implement) a method already found in
the superclass.

— A class might be abstract —i.e. it does not provide implementations
for all of its methods (its subclasses must provide them instead)

 These features are hard to use properly, and the need for
them arises only in somewhat special cases

— Making reusable libraries
— Special methods: equals and toString

 We recommend avoiding all forms of inheritance (even
“simple inheritance”) when possible — prefer interfaces and
composition.

Especially: avoid overriding.

When do constructors execute?
How are fields accessed?
What code runs in a method call?

How do method calls work?

What code gets run in a method invocation?
o.move(3,4);

When that code is running, how does it access the fields of
the object that invoked it?

X = X + dx;
When does the code in a constructor get executed?

What if the method was inherited from a superclass?

ASM refinement: The Class Table

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x =
public int get() { return x; }
hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

ks

X + d; }

The class table contains:
* the code for each method,
* references to each class’s parent, and
* the class’s static members.

Class Table

Object |
String toString(){.. |

boolean equals..

Counter

extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec(){incBy(-y);}

this

 |Inside a non-static method, the variable this is a reference
to the object on which the method was invoked.

References to local fields and methods have an implicit
“this.” in front of them.

class C {
private int f;

public void copyF(C other) {

this.f = other.f;

¥
h

Stack

this

Heap N
N
f 0

An Example

public class Counter {
private int x;
public Counter () { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

public class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

by

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

..with Explicit th1s and super

public class Counter extends Object {
private int x;
public Counter () { super(); this.x = 0;
public void incBy(int d) { this.x = thi
public int get() { return this.x; }

hy

public class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

by

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

Constructing an Object

Workspace Stack Heap

Decr d = new Decr(2);
d.dec();
int x = d.get(Q);

Class Table

Object
String toString(){..

boolean equals..

Counter

extends

Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends
Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating Space on the Heap

Heap

|

Workspace Stack
super(); Fhocs;
this.y = initY; int x = d.get();

this
initY

[2]

Invoking a constructor:

* allocates space for a new object
in the heap

* includes slots for all fields of all
ancestors in the class tree
(here: x andy)

* creates a pointer to the class —

this is the object’s dynamic type

* runs the constructor body after
pushing parameters and this
onto the stack

Note: fields start with a
“sensible” default
- 0 for numeric values
-null forreferences

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Calling super

Workspace Stack Heap
super(); 2oy
this.y = initY; int x = d.getO;
this o~
inity | z|
Call to super:

* The constructor (implicitly) calls
the super constructor

* Invoking a
method/constructor pushes the
saved workspace, the method
params (none here) and a new
this pointer.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Abstract Stack Machine

Workspace Stack
iiiiElﬁiflf:)) B ecy: =
thlS.X = @; int x = d.get(Q);

this o~
inity | 2|

(Running Object’s default
constructor omitted.)

Eﬁis.y = initY;

this P

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a Field

Workspace Stack Heap Class Table
this.x = 0; ey Object
int x = d.getQ);
String toString(){..
this -
I 0 I boolean equals..
inity | z|

Eﬁis.y = initY;

Counter

this e

extends Object

Assignment into the this.x field CounterQ) i x = 0; }

goes in two steps: void incBy(int d){..}
- look up the value of th1is in the int get() {return x;}
stack
- write to the “X” slot of that
) Decr
object.

extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

__Assigning to a Field

Stack

Decr d = _;
d.decQ);
int x = d.getQ);

this ~

inity | z|

Eﬁis.y = initY;

this P

Assignment into the this.x field
goes in two steps:
- look up the value of this in the
stack
- write to the “x” slot of that
object.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack Heap Class Table

; dodecO; Object
int x = d.getQ);
String toString(){..
this e
boolean equals..
initY H

Eﬁis.y = initY;

Counter

this P

extends Object

Done with the call to “super”, so CounterO { x = 0;

pop the stack to the previous void incBy(int d){.}

workspace. int get() {return x;}

\4Decr

extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Continuing

Workspace

this.y = 1nitY;

Stack Heap
Decr d = _;
d.decQ);
int x = d.get(Q);
this e
initY H

Continue in the Decr class’s

constructor.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Abstract Stack Machine

Workspace

Stack

this.y

2;

Decr d = _;
d.decQ);

int x = d.get(Q);

this

O

initY

[2]

Heap

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Assigning to a field

Workspace Stack Heap

Decr d = _;
d.decQ);

this.y = 2;

int x = d.getQ);

[2]

Assighment into the this.y
field.

(This really takes two steps as we
saw earlier, but we're skipping
some for the sake of brevity...)

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

\4 Decr

extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Done with the call

Workspace Stack Heap

. Decr d = _;
’ d.dec(Q);

int x = d.get(Q);

inity | 2 |

Done with the call to the Decr
constructor, so pop the stack and
return to the saved workspace,
returning the newly allocated
object (now in the this pointer).

this L I > I

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Returning the Newly Constructed Object

VVorkspafE;/’/”’—' Stack

Decr d =/;
d.dec(Q);
int x = d.get(Q);

Continue executing the program.

‘\\\\NHeag

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Allocating a local variable

Workspace Stack

Heap
7 ™a

d.decQ; e

1|

int x = d.get(Q);

Allocate a stack slot for the local
variable d. Note that it’s mutable...
(bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable, we
often omit the bold boxes and just

assume the contents can be
modified.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Invoke the dec method on the
object. The code is found by
“pointer chasing” through the class
hierarchy.

This process is called dynamic
dispatch: Which code is run
depends on the dynamic class of
the object. (In this case, Decr.)

Search through the
methods of the Decr,
class trying to find one
called dec.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void©dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Workspace Stack

this.incBy(-this.y); <

1|

{ﬁt x = d.get(Q);

this

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments
(none in this case).

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Workspace

Reading A Field’s Contents

this.incBy(-#y);

d

1|

{ﬁt x = d.get(Q);

this

Read from the Y slot of the object.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch, Again

ThcBy(-2); d

1|

{ﬁt x = d.get(Q);

this

Invoke the 1NCBy method on the
object via dynamic dispatch.

In this case, the 1nCBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed — Java’s static type system
ensures this.

Search through the
methods of the Decr,
class trying to find one
called 1nCBy.

If the search fails,
recursively search the
parent classes.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends

void incBy(int d){..}

int get() {return x;}

Decr

extends Counte

Decr(int i

decOO{incBy(-y);}

Running the body of 1ncBYy

Workspace Stack

this.x

d

{ﬁt x = d.get(Q);

this

this.x

It takes a few steps...

Body of 1ncBy::
-reads this.x
- looks up d

- computes result this.x + d
- stores the answer (-2) in this.x

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

After a few more steps...

Workspace Stack

Class Table

Heap
7 ™

int x = d.get(Q); d I‘/I

Object

String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

Now use dynamic dispatch to invoke the int get() {return x;}
get method for d. This involves
searching up the class hierarchy again...

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After yet a few more steps...

Workspace

Heap
7 ™

1|

Done! (Phew!)

L -2]

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Summary: this and dynamic dispatch

When object’s method is invoked, as in 0.m(), the code that runs is
determined by O’s dynamic class.

— The dynamic class, represented as a pointer into the class table, is included in
the object structure in the heap

— If the method is inherited from a superclass, determining the code for m might
require searching up the class hierarchy via pointers in the class table

— This process of dynamic dispatch is the heart of OOP!

Once the code for m has been determined, a binding for this is pushed
onto the stack.

— The th1s pointer is used to resolve field accesses and method invocations
inside the code.

