Programming Languages
and Techniques
(C1S120)

Lecture 26
November 2" 2015

Java ASM
Generics

Announcements

* Midterm 2 is Friday, November 6 in class

e Lastnames A-L Leidy Labs 10 (here)
e Lastnames M-Z7Z Cohen G17

— Everything starting with mutable state in Ocaml to Friday's

e Review Session:

Wednesday, November 4th
Levine 100

7-9PM
Pizza!

* My office hours today: 3:30-4:30

this

 |Inside a non-static method, the variable this is a reference
to the object on which the method was invoked.

References to local fields and methods have an implicit
“this.” in front of them.

class C {
private int f;

public void copyF(C other) {

this.f = other.f;

¥
h

Stack

this

Heap N
N
f 0

An Example

public class Counter {
private int x;
public Counter (O { x = 0; }
public void incBy(int d) { x = x + d; }
public int get() { return x; }

}

class Decr extends Counter {
private int y;
public Decr (int initY) { y = initY; }
public void dec() { incBy(-y); }

ks

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

Example

public class Counter extends Object {
private int x;
public Counter () { super(); this.x = 0; }
public void incBy(int d) { this.x = this.x
public int get() { return this.x; }

+ d; }
}

class Decr extends Counter {
private int y;
public Decr (int initY) { super(); this.y = initY; }
public void dec() { this.incBy(-this.y); }

ks

// .. somewhere in main:
Decr d = new Decr(2);
d.dec();

int x = d.get(Q);

How comfortable do you feel with the abstract stack
machine?

Terrible, I’'m totally lost.
A little shaky, but OK
Pretty comfortable
Great! Not a problem.

el

After the declaration of d

Workspace Stack

Heap
7 ™a

d.decQ; e

1|

int x = d.get(Q);

Allocate a stack slot for the local
variable d. It’s mutable... (see the
bold box in the diagram).

Aside: since, by default, fields and
local variables are mutable, we
often omit the bold boxes and just

assume the contents can be
modified.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Invoke the dec method on the
object. The code can be found by
“pointer chasing”.

This process is called dynamic
dispatch — which code is run
depends on the dynamic class of
the object. (In this case, Decr.)

Search through the
methods of the Decr,
class to find one
called

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void©dec(){incBy(-y);}

Dynamic Dispatch: Finding the Code

Workspace Stack

this.incBy(-this.y); <

1|

{ﬁt x = d.get(Q);

this

Call the method, remembering the
current workspace and pushing the
this pointer and any arguments
(none in this case).

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

Workspace

Reading A Field’s Contents

this.incBy(-#y);

d

1|

{ﬁt x = d.get(Q);

this

Read from the Y slot of the object.

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Dynamic Dispatch, Again

ThcBy(-2); d

1|

{ﬁt x = d.get(Q);

this

Invoke the 1NCBy method on the
object via dynamic dispatch.

In this case, the 1nCBy method is
inherited from the parent, so
dynamic dispatch must search up
the class tree, looking for the
implementation code.

The search is guaranteed to
succeed — Java’s static type system
ensures this.

Search through the
methods of the Decr,
class to find one

called 1nCBy.

If the search fails,
(recursively) search the
parent class.

Class Table

Object
String toString(){..

boolean equals..

Counter

extends

void incBy(int d){..}

int get() {return x;}

Decr

extends Counte

Decr(int i

decOO{incBy(-y);}

Running the body of 1ncBYy

Workspace Stack Heap

this.x = this.x + d; d [«

‘ {r’1t x = d.get(Q);

this

this.x = -2;

Class Table

Object
String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

It takes a few steps...
Body of 1ncBy::
-reads this.x
- looks up d
- computes result this.x + d
- stores the answer (-2) in this.x

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

After a few more steps...

Workspace Stack

Class Table

Heap
7 ™

int x = d.get(Q); d I‘/I

Object

String toString(){..

boolean equals..

Counter
extends Object
Counter() { x =0; }

void incBy(int d){..}

Now use dynamic dispatch to invoke the int get() {return x;}
get method for d. This involves
searching up the class tree again...

Decr
extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After a few more steps...

Workspace Stack Heap Class Table
return this.x; ¢ E Object
int x = _; String toString(){..
boolean equals..
this e
Counter
extends Object
Counter() { x =0; }
void incBy(int d){..}
Now use dynamic dispatch to invoke the int get() {return x;}
get method for d. This involves
searching up the class tree again... Decr

extends Counter
Decr(int initY) { .. }

void dec(){incBy(-y);}

After yet a few more steps...

Workspace

Heap
7 ™

1|

Done! (Phew!)

L -2]

Class Table

Object
String toString(){..

boolean equals..

Counter

extends Object
Counter() { x = 0; }
void incBy(int d){..}

int get() {return x;}

\4Decr

extends Counter

Decr(int initY) { .. }

void dec(){incBy(-y);}

Summary: this and dynamic dispatch

When object’s method is invoked, as in 0.m(), the code that runs is
determined by O’s dynamic class.

— The dynamic class, which is just a pointer to a class, is included in the object
structure in the heap.

— If the method is inherited from a superclass, determining the code for m might
require searching up the class hierarchy via pointers in the class table.

— This process is called dynamic dispatch (the heart of OOP!)

Once the code for m has been determined, a binding for this is pushed
onto the stack.

— The th1s pointer is used to resolve field accesses and method invocations
inside the code.

Static members & Java ASM

Based on your understanding of the ‘this’ parameter, is it
possible to refer to ‘this’ in a static method?

1. No
2. Yes
3. I’'m not sure

Static Members

e (Classes in Java can also act as containers for code and data.

e The modifier static means that the field or method is
associated with the class and not instances of the class.

You can do a static assignment

to initialize a static field.
public class C { é,//”'/’

public static int x = 23;
public static int someMethod(int y) { return C.x + y; }
public static void main(String args[]) {

.
}

C.x = C.x + 1;
C.someMethod(17);

™S~

Access to the static member uses the class name

C.xorC.foo()

Example of Statics

The java.lang.Math library provides static fields/methods for many
common arithmetic operations:

Math.PI == 3.141592653589793
Math.sin, Math.cos

Math.sqgrt

Math.pow

etc.

Class Table Associated with C

* The class table entry for C

C has a field slot for X. extends Object

static x I 23 I

static int someMethod(int y)
{ return x + y; }

« Updatesto C.X modify
the contents of this

slot: C.x = 17;

static void main(String args[])

{..}

e Astatic field is a global variable
— There is only one heap location for it (in the class table)

— Modifications to such a field are globally visible (if the field is public)
— Generally not a good idea!

Static Methods (Details)

Static methods do not have access to the th1is pointer

— Why? There isn’t an instance to dispatch through.

— Therefore, static methods may only directly call other static methods.
— Similarly, static methods can only directly read/write static fields.

— Of course a static method can create instance of objects (via hew) and
then invoke methods on those objects.

Gotcha: It is possible (but confusing) to invoke a static
method as though it belongs to an object instance.

— e.g. 0.someMethod(17) where someMethod is static
— Eclipse will issue a warning if you try to do this.

Object

public class Object {
boolean equals(Object o) {
.. // test for equality

ks
String toString() {

.. // return a string representation

}
// other methods omitted

Object is the root of the class tree.
— Classes that leave off the “extends” clause implicitly extend Object
— Arrays also implement the methods of Object
— This class provides methods useful for all objects to support

Object is the highest type in the subtyping hierarchy.

Recap: Subtyping

Object classes (form a tree)
e T interfaces
E .-._..'.-.-.-.....
T T A R
| . S
! Displaceable Area
i / ~~\‘\\ ,’/’
1 S ,l
1 ~~\~ ,,
Displaceablelmpl ™~
AN Shape
/s 1
U 1
/s -
/ i
/s H
l, 1
e -
/ i
Point Circle Rectangle - Interfages extend (possilgly many) ipterfaces
- Classes implement (possibly many) interfaces
- Classes (except Object) extend exactly one
------- Extends other class (Object if implicit)
Implements - Interfacg types (and arrays) are subtypes “by
....... Subtype by fiat fiat” of Object

Subtype Polymorphism*

e Main idea:

Anywhere an object of type A is needed, an object that is
a subtype of A can be provided.

void method(A obj) {
// use obj at type A
by

method(new B());

e If Bisasubtype of A, it provides all of A’s (public) methods.

 Due to dynamic dispatch, the behavior of the method
depends on B’s implementation.
— Behavior of B should be “compatible” with A’s behavior
— Simple inheritance makes this easier

*polymorphism = many shapes

Is subtyping good enough?

Subtype Polymorphism
VS.

Parametric Polymorphism

Mutable Queue ML Interface

module type QUEUE =

sig
(* type of the data structure *)
type 'a queue

(* Make a new, empty queue *)
val create : unit -> 'a queue

(* Add a value to the end of the queue *)
val enq : 'a -> 'a queue -> unit

(* Remove the front value and return it (if any) *)
val deq : 'a queue -> ‘a

(* Determine if the queue 1s empty *)
val is_empty : ‘a queue -> bool

(* Remove the first occurrence of the value. *)
val remove : 'a -> 'a queue -> unit
end

Subtype Polymorphism

public interface ObjQueue {
public void enq(Object o0);
public Object deq();
public boolean isEmpty();

Iy
ObjQueue g = ..; What type for A?
g.enq(" CIS 120 "); 1. String

_A__ X =q.deqQ; Object

ObjQueue

=

None of the above

