Programming Languages
and Techniques
(C1S120)

Lecture 28

November 9th, 2015

Overriding, Equality, Abstract Classes



Announcements

e Midterm 2 has been graded

— More info available on Weds. (after make-up exams are done)

* HWO7: PennPals is available
— Due Tuesday: November 17t
— Start Early!
— Emphasizes: Java Collections, Design



Method Overriding




A Subclass can Override its Parent

public class C {
public void printName() { System.out.println(“I’m a C?); }

}

public class D extends C {
public void printName() { System.out.println(“I’m a D”); }

}

// somewhere in main
C c = new DQ);
c.printName();

What gets printed to the console?

I’'maC

I'ma D
NullPointerException
NoSuchMethodException

.




A Subclass can Override its Parent

public class C {
public void printName() { System.out.println(“I’m a C?); }
¥

public class D extends C {
public void printName() { System.out.println(“I’m a D”); }
¥

// somewhere in main
C c = new DQ);
c.printName();

Our ASM model for dynamic dispatch already explains what will happen
when we run this code.

Useful for changing the default behavior of classes.

But... can be confusing and difficult to reason about if not used carefully.



Overriding Example

Stack Heap

Workspace
C ¢ = new DQO);

c.printName();>

Class Table

Object
String toString(){..

boolean equals..

C

extends

cO {}
void printName(){..}

D

extends

DO { .. }
void printName(){..}



Overriding Example

Workspace

Stack Heap

c.printName(Q);

< [=— DN

Class Table

Object

String toString(){..

boolean equals..

C A’//Q
extends 0””/' \

CO {1}

void printName(){..}

D

extends v—””"

DO { .. }

void printName(){..}




Overriding Example

Workspace

Stack Heap

.printName();

Class Table

Object

String toString(){..

boolean equals..

C ‘4,/1€
extends r”’/,> \

CO {1}

void printName(){..}

D

extends v”””'

DO { .. }

printName(){..}




Overriding Example

Workspace

Stack Heap

System.out.
println(“I’m a D”);

/

Class Table

Object

String toString(){..

boolean equals..

C A’//Q
extends 0””/' \

CO {1}

void printName(){..}

D

extends v—””"

DO { .. }

void printName(){..}




Difficulty with Overriding

class C {

public void printName() {
System.out.printin("I'm a " + getName());

}

public String getName() {
return "C";

}
}
class E extends C { What gets printed to the console?
public String getName() { 1. TmaC
return "E"; 2. 'makt
1 3. 'mankE
1 4. NullPointerException
// 1n main

C c = new EQ;
c.printName();




Difficulty with Overriding

The C class might be
class C { in another package, or a
library...
public void printName() { 4f”””’ Y
System.out.printin("I'm a " + getName()); Whoever wrote E might
} not be aware of the
_ . implications of
public String getName() { changing getName.
return "C";
ks
¥

Overriding the method causes the
behavior of printName to

public String getName() { change!
return "E";

class E extends C {

— Overriding can break invariants/
¥ abstractions relied upon by the
ks superclass.

// 1n main
C ¢ = new EQ;
c.printName();




Case study: Equality




Consider this example

public class Point {
private final int Xx;
private final int y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return x; }
public int getY() { return y; }

h

// somewhere in main..

List<Point> 1 = new LinkedList<Point>();
1.add(new Point(1,2));
System.out.println(l.contains(new Point(1,2)));

What gets printed to the console?

1. true Why?

2. false




When to override equals

In classes that represent immutable values
— String already overrides equals
— Our Point class is a good candidate

When there is a “logical” notion of equality

— The collections library overrides equality for Sets
(e.g. two sets are equal if and only if they contain equal elements)

Whenever instances of a class might need to serve as

elements of a set or as keys in a map

— The collections library uses equals internally to define set
membership and key lookup

— (This is the problem with the example code)



When not to override equals

* When each instance of a class is inherently unique

— Often the case for mutable objects (since its state might change, the
only sensible notion of equality is identity)

— Classes that represent “active” entities rather than data (e.g. threads,
gui components, etc.)

* When a superclass already overrides equals and provides the
correct functionality.

— Usually the case when a subclass is implemented by adding only new
methods, but not fields



How to override equals

*See the very nicely written article “How to write an Equality Method in Java” by Oderski, Spoon, and
Venners (June 1, 2009) at http://www.artima.com/lejava/articles/equality.html



The contract for equals

* The equals method implements an equivalence relation on non-null
objects.

e ltis reflexive:
— for any non-null reference value x, x.equals(x) should return true

* |tis symmetric:
— for any non-null reference values x and y, x.equals(y) should return true if and
only if y.equals(x) returns true
* Itis transitive:

— for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.

* |tis consistent:

— for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information
used in equals comparisons on the object is modified

For any non-null reference x, x.equals(null) should return false.

Directly from: http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#equals(java.lang.Object)




First attempt

public class Point {
private final int x;
private final int y;
public Point(int x, int y) {this.x = x; this.y = y;}
public int getX() { return x; }
public int getY() { return y; }
public boolean equals(Point that) {
return (this.getX() == that.getX() &&
this.getY() == that.getY());




Gocha: overloading, vs. overriding

public class Point {

// overloaded, not overridden
public boolean equals(Point that) {
return (this.getX() == that.getX() &&
this.getY() == that.getY());

¥
¥
Point pl = new Point(1,2);
Point p2 = new Point(1,2);
Object o = p2;

System.out.println(pl.equals(o));
// prints false!
System.out.println(pl.equals(p2));
// prints true!

The type of equals as declared in Object is:
public boolean equals(Object o)

The implementation above takes a Point not an Object!




Overriding equals, take two



Properly overridden equals

public class Point {

éOverride

public boolean equals(Object o) {
// what do we do here???

+

e Usethe @Jverride annotation when you intend to override a method
so that the compiler can warn you about accidental overloading.

* Now what? How do we know whether the o is even a Point?
— We need a way to check the dynamic type of an object.




1hstanceof

 The 1nstanceof operator tests the dynamic type of any object

Point p = new Point(1,2);
Object ol = p;
Object 02 = "hello";

System.out.println(p instanceof Point);
// prints true

System.out.println(ol instanceof Point);
// prints true

System.out.println(o2 instanceof Point);
// prints false

System.out.println(p instanceof Object);
// prints true

What gets printed? (1=true, 2=false)

* Inthe case of equals, instanceof is appropriate because the method
behavior depends on the dynamic types of two objects: ol.equals(o2)

e But... use instanceof judiciously — usually dynamic dispatch is better.




Type Casts

* We can test whether o is a Point using instanceof

@0verride Check whether o

public boolean equals(Object o) { is a Point.
boolean result = false;
1f (o instanceof Point) {

// 0 1s a point - how do we treat it as such?
ks

return result;

h

e Useatypecast: (Point) o

— At compile time: the expression (Point) o hastype Point.

— At runtime: check whether the dynamic type of o is a subtype of Point, if so
evaluate to o, otherwise raise a ClassCastException

— As with instanceof, use casts judiciously —i.e. almost never. Instead use
generics



Refining the equals implementation

@0Qverride

public boolean equals(Object o) { This cast is
boolean result = false;

. guaranteed to
if (0.getClass() != getClassOd 1 = qeceed

Point that = (Point) o;
result = (this.getX() == that.getX() &&
this.getY() == that.getY());

Iy

return result;

What about subtypes?




Equality and Subtypes



Suppose we extend Point like this

public class ColoredPoint extends Point {

private final int color;

public ColoredPoint(int x, int y, int color) {

super(x,y);
this.color = color;

h

@Override

public boolean equals(Object o) {
boolean result = false;
1f (o instanceof ColoredPoint) {

ColoredPoint that = (ColoredPoint) o;
result = (this.color == that.color &&

super.equals(that));
} E—

This version of
equals is suitably
modified to
check the color
field too.

return result;

Keyword super is
used to invoke
overridden methods.




Broken Symmetry

Point p = new Point(1,2);
ColoredPoint cp = new ColoredPoint(1,2,17);
System.out.println(p.equals(cp));

// prints true
System.out.println(cp.equals(p));

// prints false

What gets printed? (1=true, 2=false)

 The problem arises because we mixed Points and ColoredPoints, but
ColoredPoints have more data that allows for finer distinctions.

* Should a Point ever be equal to a ColoredPoint?




Suppose Points can equal ColoredPoints

public class ColoredPoint extends Point {

public boolean equals(Object o) {

boolean result = false;

1f (o instanceof ColoredPoint) {
ColoredPoint that = (ColoredPoint) o;
result = (this.color == that.color &&

super.equals(that));

} else 1f (o instanceof Point) {
result = super.equals(o);

¥

return result;

¥
¥

l.e., we repair the symmetry violation by checking for Point explicitly

Does this really work? (1=yes, 2=no)




Broken Transitivity

Point p

= new Point(1,2);

ColoredPoint cpl = new ColoredPoint(1,2,17);
ColoredPoint cp2 = new ColoredPoint(1,2,42);

System.

//

System.

//

System.

//

System.

//

out.println(p.equals(cpl));
prints true
out.println(cpl.equals(p));
prints true(!)
out.println(p.equals(cp?2));
prints true
out.println(cpl.equals(cp2));
prints false(!!)

What gets printed? (1=true, 2=false)

 We fixed symmetry, but broke transitivity!

* Should a Point ever be equal to a ColoredPoint?

Nol




Equality and Hashing

* Whenever you override equals you must also override
hashCode in a compatible way

— hashCode is used by the HashSet and HashMap collections

e Forgetting to do this can lead to extremely puzzling bugs!



Intentional Overriding

Abstract Classes




Abstract Classes

Are like classes, but with some method implementations
omitted.

— They are instead declared abstract

Must declare the class itself as abstract

Non-abstract subclasses must provide an implementation of
the missing methods

Why? When there is a general algorithm whose
implementation depends on the behavior of subtypes’
implementation

— E.g. remove-all defined in terms of remove in the Collections library



When To Override?

 Only override methods when the parent class is designed specifically to
support such modifications:

— If the library designer specifically describes the behavioral contract that the
parent methods assume about overridden methods (e.g. equals,
paintComponent)

— If you’re writing the code for both the parent and child class (and will maintain
control of both parts as the software evolves) it might be OK to overrride.

— Either way: document the design
— Use the @0verride annotation to mark intentional overriding

 Look for other means of achieving the desired outcome:
— Use composition & delegation (i.e. wrapper objects) rather than overriding



How to prevent overriding

By default, methods can be overridden in subclasses.
The fi1nal modifier changes that.

Final methods cannot be overridden in subclasses

— Prevents subclasses from changing the “behavioral contract” between
methods by overriding

— static final methods cannot be hidden

Similar, but not the same as final fields and local variables:
— Act like the immutable name bindings in OCaml

— Must be initialized (either by a static initializer or in the constructor) and
cannot thereafter be modified.

— static final fields are useful for defining constants (e.g. Math.PI)



