Programming Languages
and Techniques
(C1S120)

Lecture 29

November 11, 2015

Overriding, Enums, Exceptions

Announcements

e HWO7: PennPals is available
— Due Tuesday: November 17t
— Start Early!
— Emphasizes: Java Collections, Design

e Midterm 2:

— Solutions are up on the web site

— You can examine your exams starting tomorrow
— Levine 308

Midterm 2 Results

average

Average: ~72
Median: ~73
Std. Dev: ~13
Max: 100

75—-100: A
70— 75 : B+/A-
55-70:B
45-50:C
<45 :DorkF

20 40 60 80 100

Poll

Have you started HW 07 PennPals?

No
I've thought about the ServerModel structure

I've got the basics working

= e =

I'm Done

Intentional Overriding

Abstract Classes

Abstract Classes

* Are like classes, but with some method implementations
omitted.

— They are instead declared abstract

* Non-abstract subclasses must provide an implementation of
the missing methods

* Why? When there is a general algorithm whose
implementation depends on the behavior of subtypes'
implementation

— E.g. removeAll defined in terms of remove in the Collections library

When To Override?

* Only override methods when the parent class is designed specifically to
support such modifications:

— If the library designer specifically describes the behavioral contract that the
parent methods assume about overridden methods (e.g. equals,
paintComponent)

— If you’re writing the code for both the parent and child class (and will maintain
control of both parts as the software evolves) it might be OK to overrride.

— Either way: document the design
— Use the @0verride annotation to mark intentional overriding

* Look for other means of achieving the desired outcome:
— Use composition & delegation (i.e. wrapper objects) rather than overriding

How to prevent overriding

By default, methods can be overridden in subclasses.
The final modifier changes that.

Final methods cannot be overridden in subclasses

— Prevents subclasses from changing the “behavioral contract” between
methods by overriding

— static final methods cannot be hidden

Similar, but not the same as final fields and local variables:
— Act like the immutable name bindings in OCaml

— Must be initialized (either by a static initializer or in the constructor) and
cannot thereafter be modified.

— static final fields are useful for defining constants (e.g. Math.PI)

Digression: Enumerations

See: ChatDemo.java

Enumerations (a.k.a. Enum Types)

e Java supports enumerated type constructors.
— These are a bit like OCaml’s datatypes.

* Example (from Chat HW) ServerError:

public enum ServerError {
OKAY(200),
INVALID_NAME(401),
NO_SUCH_CHANNEL(402),
NO_SUCH_USER(403),

private final int value;
ServerError(int value) {

this.value = value;
hy

public int getCode() {
return value;
¥

}

// The 1nteger associated with this enum value

Using Enums: Switch Cases

// Use of 'enum' from CommandParser.java (Chat HW)
CommandType t = ..

switch (t) {

case CREATE : System.out.println("Got CREATE!"); break;
case MESG : System.out.println("Got MESG!"); break;
default: System.out.println("default");

}

* Multi-way branch, similar to OCaml’s match
— Works for: primitive data ‘int’, ‘byte’, ‘char’, etc., Enum types, String
— Not pattern matching! (Cannot bind subcomponents of an Enum)

 The default keyword specifies the “catch all” case.

What will be printed by the following program?

Command.Type t = Command.Type.CREATE;

switch (t) {

case CREATE : System.out.printin("Got CREATE!");
case MESG : System.out.println("Got MESG!"),
case NICK : System.out.println("Got NICK!");
default: System.out.printin("default”),

¥

Got CREATE!
Got MESG!
Got NICK!
default
something else

vlogmo e =

break

* GOTCHA: Must use explicit break to avoid “fallthrough”

— without break, the code of the next branch will be run too!

 The program in the quiz prints all of the strings:

Got CREATE!
Got MESG!
Got NICK!
default

Enumerations

 Enum types are just a convenient way of defining a class along
with methods of a class.
— Enum types (implicitly) extend java.lang.Enum
— They can contain constant data “properties”
— As classes, they can have methods: e.g. to access a field
— Intended to represent constant data values.

 Automatically generated static methods:
— valueOf : converts a Stringto an Enum
Command.Type ¢ = Command.Type.valueOf ("CONNECT");
— values: returns an Array of all the enumerated constants
Command.Type[] varr = Command.Type.values();

Dealing with the unexpected

Why do methods “fail”?

Some methods make requirements of their arguments

— Input to max is a nonempty list, Iltem is non-null, more elements for
next

Interfaces may be imprecise

— Some Iterators don't support the "remove" operation
External components of a system might fail

— Try to open a file that doesn't exist

Resources might be exhausted

— Program uses all of the computer's disk space

These are all exceptional circumstances...
— how do we deal with them?

Ways to handle failure

e Return an error value (or default value)
— e.g. Math.sqgrt returns NaN ("not a number") if given input < 0
— e.g. Many Java libraries return nul L
— e.g. file reading method returns -1 if no more input available
— Caller must check return value, but it’s easy to forget
— Use with caution — easy to introduce nasty bugs!

* Use an informative result
— e.g.in OCaml we used options to signal potential failure
— e.g.in Java, we can create a special class like option
— Passes responsibility to caller, but caller forced to do the proper check

* Use exceptions
— Available both in OCaml and Java
— Any caller (not just the immediate one) can handle the situation
— If an exception is not caught, the program terminates

Exceptions

An exception is an object representing an abnormal condition
— Its internal state describes what went wrong

— e.g. NullPointerException, lllegalArgumentException, IOException

— Can define your own exception classes

Throwing an exception is an emergency exit from the current
context

— The exception propagates up the invocation stack until it either
reaches the top of the stack, in which case the program aborts with
the error, or the exception is caught

Catching an exception lets callers take appropriate actions to
handle the abnormal circumstances

Example from Pennstagram HW

private void load(String filename) {
ImageIcon 1icon;

try {
i1f ((new File(filename)).exists())

1con = new ImageIcon(filename);

else {
java.net.URL u = new java.net.URL(filename);

icon = new Imagelcon(u);

by
} catch (Exception e) {

throw new RuntimeException(e);
}

Simplified Example

class C {

public void foo() {
this.bar(Q);
System.out.printin("here in foo");

}

public void bar() {
this.baz(Q);
System.out.printin("here in bar");

}

public void baz() {
throw new RuntimeException();

}
}

2
3.
4

What happens if we do (new C()).foo() ?
1.

Program stops without printing anything

Program prints “here in bar”, then stops

Program prints “here in bar”, then “here in foo”, then stops
Something else

Abstract Stack Machine

Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

Workspace Stack

(new CO)).foo();

Heap

Abstract Stack Machine

W Stack \ Heap

@ .foo();

Allocate a new instance of C in the heap. (Skipping
details of trivial constructor for C.)

Abstract Stack Machine

W Stack \ Heap

@ .foo();

Abstract Stack Machine

Workspace Stack Heap
this.bar(); -
System.out.println(
“here in foo0”); this _I

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the th1is pointer,
followed by arguments (in this case none) onto the stack.

Use the dynamic class to lookup the method body from the
class table.

Abstract Stack Machine

Workspace Stack

this.bar(Q);

—

System.out.println(
“here in foo”); this

/

Heap

Abstract Stack Machine

Heap

Workspace Stack
this.baz(); s /////’___“
System.out.println(7
“here in bar”); this / //r

§§stem.out.pr ntln(
“here 1n f060”);

this /

Abstract Stack Machine

Heap

Workspace Stack
this.baz(Q); s /////’___“
System.out.println(7
“here in bar”); this / //r

§§stem.out.pr ntln(
“here 1n f060”);

this /

Abstract Stack Machine

Workspace Stack Heap

throw new

RuntimeException(); - /?

this / //’/f

§ystem.out.pr nt¥n(
“here 1n f060”);

this / /

gystem.out. intln(
“here 1n bar”);

this 1

Abstract Stack Machine

Workspace Stack Heap

throw new

RuntimeException(); - /?

this / //’/f

§ystem.out.pr nt¥n(
“here 1n f060”);

this / /

gystem.out. intln(
“here 1n bar”);

this 1

Abstract Stack Machine

VVorkspaEE,/””””—————i Stack ‘—_5‘\\\\\\\;

throw Gaf//,

-

this /

g&stem.out.pr nt¥n(
“here 1n f060”);

this / /

gystem.out. intln(
“here 1n bar”);

this i

Heap

ception

Abstract Stack Machine

Workspac,e/ Stack \

throw Gﬁf//,

-

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
atry/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catchis found,
abort the program with an error.

this f/

System out.print¥n(
“here 1n f060”);

//\

»

this /

/

gystem.out.
“here 1in

intln(
ar”);

this 1

Heap

RuntlmeEx
ceptlon

Abstract Stack Machine

Workspace/ Stack

/

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
atry/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catchis found,
abort the program with an error.

\

-

this f/

System out.print¥n(
“here 1n f060”);

//\

»

this /

/

gystem.out.
“here 1in

intln(
ar”);

this 1

Heap

RuntlmeEx
ceptlon

Abstract Stack Machine

Workspace

Pop saved workspace frames off
the stack, looking for the most
recently pushed one with
atry/catch block whose catch
clause matches (a supertype of)
the exception being thrown.

If no matching catch is found,
abort the program with an error.

Stack Heap
A
this / //r

§§stem.out.pr ntln(RuntimeEx
“here 1in f00”); //

this /

§§stem.out.print1n(

“here 1in bar”).
Try/€atch

Abstract Stack Machine

Workspace Stack Heap
o N
- s
this /

-

Discard the current workspace. Syitem : Olj't : pr‘lgtln(/
here in foo”); ESRae

Then, pop saved workspace frames

off the stack, looking for the most Try/Catch

recently pushed one that contains for {)?
atry/catch block whose catch No! ’
clause declares a supertype of the

exception being thrown.

If no matching catch is found, abort
the program with an error.

Abstract Stack Machine

Workspace Stack Heap

-
Try/Catch »
for()? No! ‘

RuntimeEx
ception

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch

clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Abstract Stack Machine

Workspace

Stack

Program terminated with
uncaught exception (1)!

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch
clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

—

Heap

RuntimeEx
ception

Catching the Exception

class C {
public void foo() {
this.barQ);
System.out.println("here in foo");

ks
public void bar() {

try {
this.baz(Q);

} catch (Exception e) { System.out.printin("caught”); }
System.out.printin("here in bar");

hy

public void baz() {
throw new RuntimeException();

hy

hy

« Now what happens if we do (hew C()).foo();?

Abstract Stack Machine

Workspace Stack

(new C()).foo();

Heap

Abstract Stack Machine

Workspace Stack

(new CO)).foo();

Heap

Abstract Stack Machine

W Stack \ Heap
.foo();
@ 1000

Allocate a new instance of Cin the heap.

Abstract Stack Machine

W Stack \ Heap

@ .foo();

Abstract Stack Machine

Workspace Stack Heap
this.bar(); s /\N
System.out.println(

“here in foo”); this /

Save a copy of the current workspace in the stack, leaving a
“hole”, written _, where we return to. Push the th1is pointer,
followed by arguments (in this case none) onto the stack.

Abstract Stack Machine

Workspace Stack

this.bar(Q);

—

System.out.println(
“here in foo”); this

/

Heap

Abstract Stack Machine

Workspace

try {
baz();

} catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

Stack

Heap

- >
17

this

§ystem.out.pr ntln(
“here 1n f060”);

this /

Abstract Stack Machine

Workspace

try 4
baz();

1 catch (Exception e)

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar”);

Stack

Heap

this

- >
T

g&stem.out.pr ntln(
“here 1n f060”);

When executing a try/catch block,
push onto the stack a new
workspace that contains all of the
current workspace except for the
try { ... } code.

Replace the current workspace
with the body of the try.

this /

Abstract Stack Machine

Workspace Stack

Heap

this.baz(); -
N this / /

Body of the try.

g&stem.out.pr ntln(
“here 1n f060”);

Everything else.
\\\\\\s this /
When executing a try/catch block,
push onto the stack a new

—
workspace that contains all of the catch

current workspace except for the (RuntimeExceptiQn e)
try { ...} code. { System.out.Println

(“caught”); }
Replace the current workspace SYitem . Ol;'t . ngt].-n(
with the body of the try. here in bar”);

Abstract Stack Machine

Workspace

this.baz();

Stack

Heap

-

Continue executing as normal.

this

>
17

§§stem.out.pr ntln(
“here 1n f060”);

this

{

Eatch

(RuntimeException e)

{ System.out.Println
(“caught”); }

System.out.println(
“here 1in bar”);

Abstract Stack Machine

Workspace

throw new
RuntimeException();

Heap

The top of the stack is off the
bottom of the page... ©

Stack
= /_;
this / //
§§stem.out.pr ntln(
“here in f00”
this { /
Eatch

(RuntimeException e)

{ System.out.Println
(“caught”) . }_

System.out.println(
“here in bar”);

s)k

Abstract Stack Machine

Workspace

throw new
RuntimeException();

Heap

Stack
~ -
this / //
§§stem.out.pr ntln(
“here in f00”
this { [
Eatch

(RuntimeException e)

{ System.out.Println
(“caught”)y }

System.out.println(
“here 1in bar”);

s)k

Abstract Stack Machine

VVorkspaEE,/”"””——————— Stack ——-555\\\\\\\

throw @af//,

L]
-

this 7

Heap

gystem.out.pr ntln(
“here 1n f00”)

~

Runtime
Exception

this / [

catch
(RuntimeException e)
{ System.out.Println
(“caught”) . }
System.out.println(
“here 1in bar”);

L

Abstract Stack Machine

Workspac,e/ Stack \

throw Gﬁf//,

-

Heap

=4 ¢

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch

clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

this / //

§ystem.out.pr ntln(
“here 1n f00”)

Runtime
Exception

this / /

catch
(RuntimeException e)
{ System.out.Println
(“caught”) . }_
System.out.println(
“here 1in

Abstract Stack Machine

Workspace

Discard the current workspace.

Then, pop saved workspace frames
off the stack, looking for the most
recently pushed one that contains
atry/catch block whose catch

clause declares a supertype of the
exception being thrown.

If no matching catch is found, abort
the program with an error.

Stack

-

this

>
17

Heap

—

g&stem.out.pr ntln(
“here 1n f060”);

Runtime
Exception

this

{

/
(

Eatch

(RuntimeException e)

{ System.out.Println
(“caught”); }

System.out.println(
“here in bar

No!

Abstract Stack Machine

Workspace

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body

and the rest of the saved
workspace.

Continue executing as usual.

Stack

this

§§stem.out.pr ntln(
“here 1n f060”);

this /

catch“~\“§§‘§~“‘“‘““\
(RuntimeException e)
{ System.out.Println
(“caught”); }
System.out.println(
“here 1in bar”);

Heap

= P ad <
17

RuntimeEx
ception

~_ | Yes!

Abstract Stack Machine

Workspace

{ System.out.Println
(“caught”); }

System.out.println(
“here 1n bar”);

Stack

-

>

this

T

When a matching catch block is
found, add a new binding to the
stack for the exception variable
declared in the catch. Then replace
the workspace with catch body

and the rest of the saved
workspace.

Continue executing as usual.

§§stem.out.pr ntln
“here 1n f00”);

T

this

¥

e

/4

RuntimeEx
ception

Abstract Stack Machine

Workspace Stack Heap
{ System.out.Println . ///’/—__—‘
Ceaught™; Pl <
System.out.println(this / //r
“here in bar”);
gystem.out.pr ntln
Continue executing as usual. “here 1in f00"); Sl
v

this
N

Abstract Stack Machine

Workspace

15 5
System.out.println(
“here 1in bar”);

Stack

L]
-

>

this

I/

Continue executing as usual.

Console
caught

T

§§stem.out.pr ntln
“here 1n f00”);

this

7

e

(/4

Runtime
Exception

Abstract Stack Machine

Workspace

Stack

it .
System.out.println(
“here 1in bar”);

. P ad

this / //r

We're sweeping a few details
about lexical scoping of variables
under the rug — the scope of e is
just the body of the catch, so when
that is done, e must be popped
from the stack.

Console
caught

; > :
Runtime
Exception

§§stem.out.pr ntln
“here 1n f00”);

this / -

e [7]

Abstract Stack Machine

Workspace

System.out.println(
“here 1in bar”);

Stack

Heap

—

Continue executing as usual.

Console
caught

this

- >
17

§§stem.out.pr ntln(
“here 1n f060”);

Runtime
Exception

this /

Abstract Stack Machine

Workspace

System.out.println(

Stack

“here in bar”);

Heap

—

Continue executing as usual.

Console
caught

this

- >
17

§§stem.out.pr ntln(
“here 1n f060”);

Runtime
Exception

this /

Abstract Stack Machine

Workspace

Stack

Heap

—

Pop the stack when the workspace
is done, returning to the saved
workspace just after the _ mark.

Console
caught
here in bar

this

- >
T

§§stem.out.pr ntln(
“here 1n f060”);

Runtime
Exception

this /

Abstract Stack Machine

Workspace Stack Heap

System.out.println(3 ////”__“"-s
“here in foo0”);

this 7

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar

Abstract Stack Machine

Workspace Stack Heap

System.out.printin(s ///,,————~-§$
“here in foo0”);

this 7

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar

Abstract Stack Machine

Workspace Stack Heap

) -

this 7

Runtime
Exception

Continue executing as usual.

Console
caught
here in bar
here in foo

Abstract Stack Machine

Workspace Stack Heap

Program terminated normally.

Exception

Console
caught
here in bar
here in foo

When No Exception is Thrown

* If no exception is thrown while executing the body of a try {...}
block, evaluation skips the corresponding catch block.

— i.e. if you ever reach a workspace where “catch” is the statement to
run, just skip it:

Workspace Workspace
catch System.out.println(
(RuntimeException e) “here 1in bar”);

{ System.out.Println
(“caught”); }

System.out.println(
“here 1in bar”);

Catching Exceptions

* There can be more than one “catch” clause associated with each “try”

— Matched in order, according to the dynamic class of the exception thrown
— Helps refine error handling

try {
- // do something with the IO library
} catch (FileNotFoundException e) {
- // handle an absent file
} catch (IOException e) {
// handle other kinds of IO errors.
}

* Good style: be as specific as possible about the exceptions you’re
handling.

— Avoid catch (Exception e) {..} it’susuallytoo generic!

