Programming Languages
and Techniques
(C1S120)

Lecture 30

November 13, 2015

Exceptions / 10
Chapter 27



Announcements

e HW7: PennPals Chat

— Due: Tuesday, November 17t
— Start today if you haven't already!



Poll

Have you started HW 07 PennPals?

No
I've thought about the ServerModel structure

I've got the basics working

= =

I'm done



Dealing with the unexpected



Catching Exceptions

* There can be more than one “catch” clause associated with each “try”
— Matched in order, according to the dynamic class of the exception thrown
— The first clause that declares a supertype of the exception is triggered
— Helps refine error handling

try {
" // do something with the IO library
} catch (FileNotFoundException e) {
. // handle an absent file
} catch (IOException e) {
// handle other kinds of IO errors.
¥




Finally

try {

} catch (Exnl el) {
} catch (Exn2 e2) {
1 finally {

e

« Afinally clause of a try/catch/finally statement always
gets run, regardless of whether there is no exception, a
propagated exception, or a caught exception.

— even if the method returns from inside the try.



Using Finally

« Finally is often used for releasing resources that might have been
held/created by the try block:

public void doSomeIO (String file) {
FileReader r = null;
try {
r = new FileReader(file);
.. // do some IO
} catch (FileNotFoundException e) {
.. // handle the absent file
} catch (I0Exception e) {
.. // handle other IO problems
} finally {
if (r 1= null) { // don’t forget null check!
try { r.close(); } catch (I0Exception e) {..}
¥
¥




Informative Exception Handling



Exception Class Hierarchy

Object
Type of all | i
throwable objects. i
1
Throwable
I~~~ Fatal Errors: should
I RN
Subtypes of i e never be caught.
Exception must be Exception Error
declared. e,
T i
———— 1
- 1
———— [
|IOException RuntimeException Subtypes of
' ; RuntimeException
i ' do not have to be
i lllegalArgumentException declared.

FileNotFoundException



Checked (Declared) Exceptions

* Exceptions that are subtypes of Exception but not RuntimeException
are called checked or declared.

A method that might throw a checked exception must declare it using a
“throws” clause in the method type.

 The method might raise a checked exception either by:

— directly throwing such an exception

public void maybeDoIt (String file) throws AnException {
if (.) throw new AnException(); // directly throw

— or by calling another method that might itself throw a checked exception

public void doSomeIO0 (String file) throws IOException {
Reader r = new FileReader(file); // might throw



Unchecked (Undeclared) Exceptions

* Subclasses of RuntimeException do not need to be declared via “throws”
— even if the method does not explicitly handle them.

* Many “pervasive” types of errors cause RuntimeExceptions
— NullPointerException
— IndexOutOfBoundsException
— lllegalArgumentException

public void mightFail (String file) {
1f (file.equals(“dictionary.txt”) {
// file could be null!

* The original intent was that such exceptions represent disastrous
conditions from which it was impossible to sensibly recover...



Checked vs. Unchecked Exceptions

Which methods need a
"throws" clause?

Note:

IllegalArgumentException
is a subtype of
RuntimeException.

IOException is not.

Answer:
n, g and s should say
throws IOException

public class ExceptionQuiz {
public void m(Object x) {
if (X == null)
throw new IllegalArgumentException();
}
public void n(Object y) {
1f (y == null) throw new IOException();
ks
public void p(Q) {
mCnull);
ks
public void g {
n(null);
¥
public void r(Q) {
try { n(Cnull); } catch (IOException e) {}
}
public void s {
n(new Object());

}




Declared vs. Undeclared?

Tradeoffs in the software design process:

Declared = better documentation
— forces callers to acknowledge that the exception exists

Undeclared = fewer static guarantees
— but, much easier to refactor code

In practice: test-driven development encourages “fail early/fail often”
model of code design and lots of code refactoring, so “undeclared”
exceptions are prevalent.

A reasonable compromise:

— Use declared exceptions for libraries, where the documentation and usage
enforcement are critical

— Use undeclared exceptions in client code to facilitate more flexible
development



Good Style for Exceptions

In Java, exceptions should be used to capture exceptional
circumstances

— Try/catch/throw incur performance costs and complicate reasoning
about the program, don’t use them when better solutions exist

Re-use existing exception types when they are meaningful to
the situation
— e.g. use NoSuchElementException when implementing a container

Define your own subclasses of Exception if doing so can
convey useful information to possible callers that can handle
the exception.



Good Style for Exceptions

* |tis often sensible to catch one exception and re-throw a
different (more meaningful) kind of exception.

— e.g. when implementing WordScanner (in upcoming lectures), we
catch JOException and throw NoSuchElementExceptionin
the next method.

* Catch exceptions as near to the source of failure as makes
sense

— i.e. where you have the information to deal with the exception

e Catch exceptions with as much precision as you can

BAD: try {..} catch (Exception e) {.}
BETTER: try {..} catch (IOException e) {..}






Poll

How many of these these classes have you used
before CIS 120 (all part of the Java standard
library)?

* Scanner

* Reader

 |nputStream (e.g. System.in)
* FileReader

* BufferedReader

* Something else from java.io?



|/O Streams

* The stream abstraction represents a communication channel
with the outside world.

— can be used to read or write a potentially unbounded number of data
items (unlike a list)

— data items are read from or written to a stream one at a time

* The Java I/O library uses subtyping to provide a unified view
of disparate data sources and sinks.

input streams output streams

...the quick brown fox... ..au clair de la lune...

Application

...3.14159265358979... ..ACCTGAACTCAT...




Low-level Streams

At the lowest level, a stream is a sequence of binary numbers

197 46 182 170

The simplest IO classes break up the sequence into 8-bit
chunks, called bytes. Each byte corresponds to an integer in
the range 0 — 255.



InputStreamand OutputStream

Abstract classes that provide basic operations for the Stream class hierarchy:

int read Q; // Reads the next byte of data
void write (int b); // Writes the byte b to the output

These operations read and write 1Nt values that represent bytes
range @-255 represents a byte value
-1 represents “no more data” (when returned from read)

e java.io provides many subclasses for various sources/sinks of data:
files, audio devices, strings, byte arrays, serialized objects

Subclasses also provides rich functionality:
encoding, buffering, formatting, filtering




Binary 10 example

InputStream fin = new FileInputStream(filename);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.readQ);
1f (ch == -1) {
fin.close(Q);
throw new IOException("File ended early");
ks
data[j][1] = ch;
ks
ks

fin.close();




BufferedInputStream

 Reading one byte at a time can be slow!

 Each time a stream is read there is a fixed overhead, plus time
proportional to the number of bytes read.

disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

 ABufferedInputStream presents the same interface to
clients, but internally reads many bytes at once into a buffer
(incurring the fixed overhead only once)

disk -> operating system ->>>> JVM -> program
JVM -> program
JVM -> program
JVM -> program



Buffering Example

FileInputStream finl = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(finl);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.read(Q);
1f (ch == -1) {
fin.close(Q);
throw new IOException("File ended early");
¥
data[j][1] = ch;
ks
¥

fin.close();




The Standard Java Streams

java.lang.System provides an InputStream and two standard
PrintStream objects for doing console 1/0.

System.out

Sys tem.1in standard output (display)

standard input (keyboard)

| > Application

standard error (display)

System.err

Note that System. in, for example, is a static member of the class System — this means that the field “1n” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.



PrintStream Methods

PrintStream adds buffering and binary-conversion
methods to OutputStream

void println(boolean b); // write b followed by a new line
vold println(String s); // writesfollowed by a newline

volid println(Q); // write a newline to the stream
void print(String s); // write s without terminating the line

(output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

Note the use of overloading: there are multiple methods called println
— The compiler figures out which one you mean based on the number of arguments, and/
or the static type of the argument you pass in at the method’s call site.

— Thejava 1/0 library uses overloading of constructors pervasively to make it easy to
“glue together” the right stream processing routines



Character based 10

A character stream is a sequence of 16-bit binary numbers

593 46,762
\u0251 \UB6AA
‘9 cCC
—
=1L

The character-based |0 classes break up the sequence into 16-
bit chunks, of type char. Each character corresponds to a letter
(specified by a character encoding).



Reader and Writer

Similar to the InputStream and OutputStream classes, including:

int read Q); // Reads the next character
void write (int b); // Writes the char to the output

These operations read and write 1nt values that represent unicode
characters

— read returns an integer in the range 0 to 65535 (i.e. 16 bits)
— value -1 represents “no more data” (when returned from read)
— requires an “encoding” (e.g. UTF-8 or UTF-16, set by a Locale)

Like byte streams, the library provides many subclasses of Reader and Writer
Subclasses also provides rich functionality.

— use these for portable text I/0

Gotcha: System.i1n, System.out, System.err are byte streams
— So wrap in an InputStreamReader / PrintWriter if you need unicode console |/O



