Programming Languages
and Techniques
(C1S120)

Lecture 31

November 16, 2015

/0 & Histogram Demo
Chapter 28



Announcements

e HW7: PennPals Chat

— Due: Tuesday, November 17t
— Start today if you haven't already!

e HWS: Spellchecker
— Auvailable later today
— Due: Tuesday, November 24th
— Parsing, working with 1/0O, more practice with collections



Poll

Have you started HW 07 PennPals?

No
I've thought about the ServerModel structure

I've got the basics working

= =

I'm done






|/O Streams

* The stream abstraction represents a communication channel
with the outside world.

— can be used to read or write a potentially unbounded number of data
items (unlike a list)

— data items are read from or written to a stream one at a time

* The Java I/O library uses subtyping to provide a unified view
of disparate data sources and sinks.

input streams output streams

...the quick brown fox... ..au clair de la lune...

Application

...3.14159265358979... ..ACCTGAACTCAT...




Low-level Streams

At the lowest level, a stream is a sequence of binary numbers

197 46 182 170

The simplest IO classes break up the sequence into 8-bit
chunks, called bytes. Each byte corresponds to an integer in
the range 0 — 255.



InputStreamand OutputStream

Abstract classes that provide basic operations for the Stream class hierarchy:

int read Q; // Reads the next byte of data
void write (int b); // Writes the byte b to the output

These operations read and write int values that represent bytes
range 0-255 represents a byte value
-1 represents “no more data” (when returned from read)

e java.io provides many subclasses for various sources/sinks of data:
files, audio devices, strings, byte arrays, serialized objects

Subclasses also provides rich functionality:
encoding, buffering, formatting, filtering




Binary 10 example

InputStream fin = new FileInputStream(filename);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.readQ);
1f (ch == -1) {
fin.close(Q);
throw new IOException("File ended early");
ks
data[j][1] = ch;
ks
ks

fin.close();




BufferedInputStream

 Reading one byte at a time can be slow!

 Each time a stream is read there is a fixed overhead, plus time
proportional to the number of bytes read.

disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program
disk -> operating system -> JVM -> program

* ABufferedInputstream presentsthe same interface to
clients, but internally reads many bytes at once into a buffer
(incurring the fixed overhead only once)

disk -> operating system ->>>> JVM -> program
JVM -> program
JVM -> program
JVM -> program



Buffering Example

FileInputStream finl = new FileInputStream(filename);
InputStream fin = new BufferedInputStream(finl);

int[] data = new int[width][height];
for (int 1=0; 1 < data.length; i++) {
for (int j=0; j < data[@].length; j++) {
int ch = fin.read(Q);
1f (ch == -1) {
fin.close(Q);
throw new IOException("File ended early");
¥
data[j][1] = ch;
ks
¥

fin.close();




The Standard Java Streams

java.lang.System provides an InputStream and two standard
PrintStream objects for doing console I/0O.

System.out

Sys tem.1in standard output (display)

standard input (keyboard)

| > Application

standard error (display)

System.err

Note that System. in, for example, is a static member of the class System — this means that the field “in” is
associated with the class, not an instance of the class. Recall that static members in Java act like global variables.



PrintStream Methods

PrintStream adds buffering and binary-conversion
methods to OutputStream

void println(boolean b); // write b followed by a new line
void println(String s); // writes followed by a newline

void println(); // write a newline to the stream
void print(String s); // write s without terminating the line

(output may not appear until the stream is flushed)
void flush(); // actually output characters waiting to be sent

Note the use of overloading: there are multiple methods called println

— The compiler figures out which one you mean based on the number of arguments, and/
or the static type of the argument you pass in at the method’s call site.

— Thejava 1/0 library uses overloading of constructors pervasively to make it easy to
“glue together” the right stream processing routines



Character based 10

A character stream is a sequence of 16-bit binary numbers

593 46,762
\u0251 \UB6AA
‘9 cCC
—
=1L

The character-based |0 classes break up the sequence into 16-
bit chunks, of type char. Each character corresponds to a letter
(specified by a character encoding).



Reader and Writer

Similar to the InputStream and OutputStream classes, including:

int read (); // Reads the next character
void write (int b); // Writes the char to the output

These operations read and write int values that represent unicode
characters

— read returns an integer in the range 0 to 65535 (i.e. 16 bits)

— value -1 represents “no more data” (when returned from read)

— requires an “encoding” (e.g. UTF-8 or UTF-16, set by a Locale)

Like byte streams, the library provides many subclasses of Reader and Writer
Subclasses also provides rich functionality.

— use these for portable text I/0

Gotcha: System. in, System.out, System.err are byte streams
— So wrap in an InputStreamReader / PrintWriter if you need unicode console |/O



Design Example: Histogram.java

A design exercise using java.io and
the generic collection libraries




Problem Statement

Write a program that, given a filename for a text file as input,
calculates the frequencies (i.e. number of occurrences) of each
distinct word of the file. The program should then print the
frequency distribution to the console as a sequence of “word:
freq” pairs (one per line).

Histogram result:

The: 1 each:1 line : 2 should : 1
Write : 1 file:2 number : 1 text:1
a:4 filename : 1 occurrences : 1 that: 1
as:2 for:1 of : 4 the : 4
calculates : 1 freq:1 one:1 then:1
command : 1 frequencies: 1 pairs : 1 to:1
console : 1 frequency : 1 per:1 word : 2
distinct : 1 given : 1 print: 1

distribution : 1 i1 program : 2

e:1l input: 1 sequence : 1






Decompose the problem

e Sub-problems:

1. How do we iterate through the text file, identifying all of
the words?

2. Once we can produce a stream of words, how do we
calculate their frequency?

3. Once we have calculated the frequencies, how do we
print out the result?

e What is the interface between these components?
 Can we test them individually?



Histogram Structure

Which data structure should we use to store the
histogram?

Set<String>

Set<Integer>
Map<Integer, String>
Map<String,Integer>
Map<String,Set<String>>

DL



Reading Data

Which I/0O class should we use to open the text file?

InputStream
FileInputStream
FileReader
BufferedReader

= =



Interactive Demo

Histogram.java and WordScanner.java




Poll

Did you attend class today?

1. yes




