Programming Languages
and Techniques
(C1S120)

Lecture 33
November 20, 2015

Swing |: Drawing and Event Handling
Chapter 29

Announcements

« HWS: Spellchecker

— Available on the web site
— Due: Tuesday, November 24th
— Parsing, working with 1/0O, more practice with collections

e Next Week: No Lab Sections

* Next Wednesday: Bonus Lecture
"Consequences of Code as Data"
— Attendance not required (but encouraged if you are around!)

Poll

Have you started HW 08 (Spellchecker) Yet?

Not at all
I’'ve downloaded it

Partway through
Finished!

= e I

CIS 120

Simple Drawing

CIS 120

DrawingCanvas.java

DrawingCanvasMain.java

Fractal Drawing Demo

CIS 120

Simple Drawing Component

public class DrawingCanvas extends JComponent {

public void paintComponent(Graphics gc) {
super.paintComponent(gc);

// set the pen color to green
gc.setColor(Color.GREEN);

// draw a fractal tree
fractal (gc, 75, 100, 270, 15);

h

// get the size of the drawing panel
public Dimension getPreferredSize() {
return new Dimension(150,150);

¥

How to display this component?

CIS 120

JFrame

 Represents a top-level window
— Displayed directly by OS (looks different on Mac, PC, etc.)

* Contains JComponents

e Can be moved, resized, iconified, closed

public void run() {
JFrame frame = new JFrame("Tree");

// set the content of the window to be the drawing
frame.getContentPane().add(new DrawingCanvas());

// make sure the application exits when the frame closes
frame.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);

// resize the frame based on the size of the panel
frame.pack();

// show the frame
frame.setVisible(true);

User Interaction

CIS 120

Start Simple: Lightswitch Revisited

Task: Program an application that displays a button. When the
button is pressed, it toggles a “lightbulb” on and off.

OnOffDemo

The Lightswitch GUI program in Swing.

CIS 120

Swing Programming Demo

CIS 120

Layout

() Point (®) Line [_) Thick Lines

What layout would you use for
this app? What components
would you use?

CIS 120

Canvas
subclass of
JPanel
(canvas)

I I (eraoits ko (T

(toolbar)

JRadioButton (thick) (quit)
(point, line)

CIS 120

Inner Classes

CIS 120

Inner Classes

e Useful in situations where two objects require “deep access”
to each other’s internals

* Replaces tangled workarounds like “owner object”
— Solution with inner classes is easier to read
— No need to allow public access to instance variables of outer class

e Also called “dynamic nested classes”

Basic Example

Key idea: Classes can be members of other classes...

h

}

}

class Outer {
private int outerVar;

public Outer () {

outerVar = 6;

public class Inner {
private int innerVar;
public Inner(int z) {

Name of this class is
Outer.Inner

(which is also the static
type of objects that this

innerVar = outerVar + z; class creates)

}

¥

public int getInnerVar() {
return innerVar;
Reference from inner

class to instance variable
bound in outer class

CIS 120

Constructing Inner Class Objects

Based on your understanding of the Java object model, which of the
following make sense as ways to construct an object of an inner class type?

1. Outer.Inner obj = new Outer.Inner()
2. Outer.Inner obj = (new Outer()).new Inner();
3. Outer.Inner obj = new Inner();

4. Outer.Inner obj = Outer.Inner.new ()

CIS120

Object Creation

* |nner classes can refer to the instance variables and methods of the
outer class

* Inner class instances usually created by the methods/constructors
of the outer class

public Outer (O {
Inner b = new_Inner ();

5 Actually this.new

* Inner class instances cannot be created independently of a
containing class instance.

Outer.Inner b = new Outer'.Inner'()x

Outer a = new Outer(); \/

Outer.Inner b = a.new Inner();

Outer.Inner b = (new Outer()).new Inner(); \/

CIS 120

Anonymous Inner Classes

* Define a class and create an object from it all at once, inside a
method

quit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);

})} Puts button action right

anonsls g pddhs Al =~ —~
VILIT DULLUILI UCITITITLIVITI

line.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
shapes.add(new Line(..));
canvas.repaint(); Can access fields and

¥ methods of outer class, as
well as final local variables

)

CIS 120

Anonymous Inner class

* New expression form: define a class and create an object

from it all at once

new InterfaceOrClassName() {

public void methodl(int x) {
// code for methodl
}

public void method2(char y) {
// code for method?2

Normal class
gl definition,
no constructors

} allowed
hy
Static type of the expression Dynamic class of the created
is the Interface/superclass object is anonymous!

used to create it Can't refer to it.

CIS 120

Like first-class functions

 Anonymous inner classes are the real Java equivalent of
Ocaml first-class functions

* Both create "delayed computation” that can be stored in a
data structure and run later
— Code stored by the event / action listener

— Code only runs when the button is pressed
— Could run once, many times, or not at all

e Both sorts of computation can refer to variables in the current
scope
— OCaml: Any available variable
— Java: only instance variables (fields) and variables marked final

Attendance

Did you attend class today.

1. YES

CIS 120

