Programming Languages
and Techniques
(C1S120)

Lecture 36
December 3@, 2015

Hashing, HashSets

Game project grading

* Final Program Due: (88 points)
Tuesday December 8t at 11:59pm

— Submit zipfile online, submission only checks if your code compiles

* Grade based on demo with your TA during reading
days

— Make sure that you test your program in Moore 100,
especially if you use outside libraries

— Grading rubric on the assignment website

— Recommendation: don’t be too ambitious.

* NO LATE SUBMISSIONS PERMITTED

How is the Game Project going so far?

not started

got an idea

submitted design proposal
started coding

it's somewhat working

it's mostly working
debugging / polishing
done!

C

Hash Sets & Hash Maps

array-based implementation of sets and maps

Hash Sets and Maps: The Big Idea

Combine:

* the advantage of arrays:

— efficient random access to its elements

* with the advantage of a map datastructure

— arbitrary keys (not just integer indices)

How?

* Create anindex into an array by hashing the data in the key
to turnitinto an int

— Java’s hashCode method maps key data to ints

— Generally, the space of keys is much larger than the space of hashes,
so, unlike array indices, hashCodes might not be unique

Hash Maps, Pictorially

Keys hashCode Array Values
“John Doe” 000 null
5> 001 . > CSCI
“Jimmy Bob” 002 null
> 003 > > CBE
“Jane Smith” |
> 253 . * DMD
v , > 254 ¢ * WUNG
Joan Jones
255 null

A schematic HashMap taking Strings (student names) to Undergraduate Majors.
Here, “John Doe”.hashCode() returns an integer n, its hash, such that n mod
256 is 254,

Hash Collisions

Uh Oh: Indices derived via hashing may not be unique!

“Jane Smith”.hashCode() % 256 = 253
“Joe Schmoe”.hashCode() % 256 = 253

Good hashCode functions make it unlikely that two keys will
produce the same hash

But, it can happen that two keys do produce the same index —
that is, their hashes collide

Bucketing and Collisions

Keys hashCode Array Buckets of Bindings
“Jimmy Bob” CSCl
“lohn Doe” 000 null f
> 001 @u—
”Jimmy Bob” Lo l f “Joan Jones” CBE
> 003 —

“Jane Smith” DMD

“Jane Smith”
253 >~ “Joe Shmoe” | MATH

> 254 ~—
“Joan Jones” 5 . l
55 e “John Doe” WUNG

“Joe Schmoe”

Here, “Jane Smith”.hashCode() and “Joe Schmoe”.hashCode() happen to collide. The
bucket at the corresponding index of the Hash Map array stores the map data.

Bucketing and Collisions

* Using an array of buckets
— Each bucket stores the mappings for keys that have the same hash.

— Each bucket is itself a map from keys to values (implemented by a
linked list or binary search tree).

— The buckets can’t use hashing to index the values — instead they use
key equality (via the key’s equals method)

* To lookup a key in the Hash Map:

— First, find the right bucket by indexing the array through the key’s
hash

— Second, search through the bucket to find the value associated with
the key

* Not the only solution to the collision problem

Hashing and User-defined Classes

public class Point {
private final int Xx;
private final int y;
public Point(int x, int y) { this.x = x; this.y = y; }
public int getX() { return x; }
public int getY() { return y; }

}

// somewhere in main...

Map<Point,String> m = new HashMap<Point,String>();
m.put(new Point(1,2), "House");
System.out.println(m.containsKey(new Point(1,2)));

What gets printed to the console?

1. true
2. false
3. |l have noidea

HashCode Requirements

Whenever you override equals you must also override hashCode in a
consistent way:

— whenever 0l.equals(o2)== true you must ensure that
0ol.hashCode() == o02.hashCode()

Why? Because comparing
hashes is supposed to be
a quick approximation for

equality.

e Note: the converse does not have to hold:
— 0l.hashcode() == o02.hashCode()

does not necessarily mean that ol.equals(o2)

Example for Point

public class Point {
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + Xx;
result = prime * result + y;
return result;

Examples:
— (new Point(1,2)).hashCode() yields 994
— (new Point(2,1)).hashCode() vyields 1024

Note that equal points have the same hashCode
Why 31? Prime chosen to create more uniform distribution

Note: eclipse can generate this code

Computing Hashes

 Whatis a good recipe for computing hash values for your own classes?

— intuition: “smear” the data throughout all the bits of the resulting
integer

1. Start with some constant, arbitrary, non-zero intin result.

2. For each significant field f of the class (i.e. each field taken into account
when computing equals), compute a “sub” hash code C for the field:
— Forbooleanfields: (f 2 1 : @)
— For byte, char, int, short: (1int) f
— Forlong: (1nt) (f A (f >>> 32))
— For references: 0 if the reference is null, otherwise use the hashCode() of
the field.

3. Accumulate those subhashes into the result by doing (for each field’s C):
result = prime * result + c;

4. return result

Hash Map Performance

Hash Maps can be used to efficiently implement Maps and Sets

— There are many different strategies for dealing with hash collisions with
various time/space tradeoffs

— Real implementations also dynamically rescale the size of the array (which
might require re-computing the bucket contents)

If the hashCode function gives a good (close to uniform) distribution of
hashes the buckets are expected to be small (only one or two elements)

Performance depends on workload

Terminological Clash

The word "hash" is also used in cryptography
SHA-1, SHA-2, SHA-3, MD5, etc.

Cryptographic hashes are intended to reduce large byte
sequences to short byte sequences

— Very hard to invert

— Should only rarely have collisions

— Are considerably more expensive to compute than hashCode
(so not suitable for hash tables)

Never use hashCode when you need a cryptographic hash!
— See CIS 331 for more details

Collections: take away lessons

equals
hashCode

comparelo

Collections Requirements

All collections use equals
— Defaults to == (reference equality)
— Override equals to create structural equality
— Should be: false for distinct instance classes
— An equivalence relation: reflexive, symmetric, transitive

HashSets/HashMaps use hashCode

— Override when equals is overridden

— Should be compatible with equals

— Should try to "distribute" the values uniformly
— lterator not guaranteed to follow element order

Ordered collections (TreeSet, TreeMap) need to implement
Comparable<Object>

— Override compareTo
— Should implement a total order

— Strongly recommended to be compatible with equals
(i.e. o1.equals(02) exactly when o1.compareTo(o2) == 0)

Comparing Collection Performance

