Programming Languages
and Techniques
(C1S120)

Lecture 37/

December 4, 2015

Advanced Java Concepts: GC & Threads



FINAL EXAM

e Wednesday, December 16, noon — 2PM
Two locations:
— CHEM 102 last names A -R
— LEVH 101 last names S - Z

 Comprehensive exam over course concepts:
— OCaml material (though we won’t worry much about syntax)
— All Java material (emphasizing material since midterm 2)
— all course content
— old exams posted

 Closed book, but:

— One letter-sized, handwritten sheet of notes allowed

e Review Session:
— TBA

CIS120 / Spring 2013




Game project grading

* Final Program Due: (88 points)
Tuesday December 8t at 11:59pm

— Submit zipfile online, submission only checks if your code compiles

* Grade based on demo with your TA during reading
days

— Make sure that you test your program in Moore 100,
especially if you use outside libraries

— Grading rubric on the assignment website

— Recommendation: don’t be too ambitious.

* NO LATE SUBMISSIONS PERMITTED




How is the Game Project going so far?

not started

got an idea

submitted design proposal
started coding

it's somewhat working

it's mostly working
debugging / polishing
done!

e =G o g Y g




Advanced Java Miscellany

Threads & Synchronization We'll touch on
Garbage Collection these.
Packages

JVM (Java Virtual Machine) and compiler details:
— class loaders, security managers, just-in-time compilation

Advanced Generics

— Bounded Polymorphism: type parameters with ‘extends’ constraints
class C<A extends Runnable> { .. }

Type Erasure & Reflection
— Interaction between generics and arrays

— The Class class For all the nitty-gritty details:

Java Language Specification
http://docs.oracle.com/javase/specs/



Garbage Collection

Cleaning up the Heap




Garbage Collection

 The Java Abstract Machine stores all objects in the heap.

* We imagine that the heap has limitless space...
... but: real machines have limited amounts of memory

* Some languages (C and C++) use manual memory
management:

— The programmer explicitly allocates heap objects (using ‘new’)
— The programmer explicitly de-allocates the objects (using ‘free’)

e Java (and most other ‘managed’ languages) uses
garbage collection (GC).

CIS120 / Spring 2013




Why Garbage Collection?

* Manual memory management is cumbersome & error prone:
— Freeing the same reference twice is ill defined (crashes or other bugs)

— Explicit free isn’t modular: To properly free all allocated memory,
the programmer has to know what code “owns” each object. Owner
code must ensure free is called just once.

— Not calling free leads to space leaks: memory never reclaimed

* Many examples of space leaks in long-running programs

* Garbage collection:

— Have the language runtime system determine when an allocated
chunk of memory will no longer be used and free it automatically.

— Extremely convenient and safe
— Garbage collection does impose costs (performance, predictability)



Graph of Objects in the Heap

* References in the stack and global static fields are roots

Stack Heap

> —t

CIS 341: Compilers



Memory Use & Reachability

When is a chunk of memory no longer needed?
— In general, this problem is undecidable.

We can approximate this information by freeing memory that
can’t be reached from any root references.

— A root reference is one that might be accessible directly from the
program (i.e. they’re not in the heap).

— Root references include (global) static fields and references in the
stack.

If an object can be reached by traversing pointers from a root,
itis live.

It is safe to reclaim all heap allocations not reachable from a
root (such objects are garbage or dead objects).



Results of Marking Graph

Stack

Heap

.1

CIS 341: Compilers

Unreachable
blocks are

~ garbage

11



Mark and Sweep Garbage Collection

e Classic algorithm with two phases:
* Phase 1: Mark

— Start from the roots

— Do depth-first traversal, marking every object reached.

 Phase 2: Sweep

Walk over all allocated objects and check for marks.
Unmarked objects are reclaimed.
Marked objects have their marks cleared.

Optional: compact all live objects in heap by moving them adjacent to
one another. (Needs extra work & indirection to “patch up”
references)

e (In practice much more complex: "generational GC")



See GCTest.java



Garbage Collection Take Aways

Big idea: the Java runtime system tries to free-up as much memory
as it can automatically.
— Almost always a big win, in terms of convenience and reliability

Sometimes can affect performance:
— Lots of dead objects might take a long time to collect

— When garbage collection will be triggered can be hard to predict, so there
can be “pauses”

— Global data structures can have references to “zombie” objects that won’t
be used, but are still reachable = “space leak”.

There are many advanced programming techniques to address
these issues:

— Configuring the GC parameters

— Explicitly triggering a GC phase

— “Weak” references



Threads & Synchronization

Avoid Race Conditions!

(see Multithreaded.java)




Threads

* Java programs can be multithreaded

— more than one “thread” of control operating
simultaneously

* A Thread object can be created from any class that
implements the Runnable interface

— start: launch the thread
— join: wait for the thread to finish

* Abstract Stack Machine:
— Each thread has its own workspace and stack
— All threads share a common heap

— Threads can communicate via shared references



Uses + Perils

* Threads are useful when one program needs to do
multiple things simultaneously:

— game animation + user input
— chat server interacting with multiple chat clients

— hide latency: do work in one thread while another thread
waits (e.g. for disk or network |/0O)

* Problem: Race Conditions

— What happens when one thread tries to read a memory
location while another thread is writing?

— What if more than one thread tries to write different
values at the same time?



Data Races

"””,,——""'———7

eincO

C.incO

this.cnt =
this.cnt + 1;

this.cnt =
this.cnt + 1;

this.cnt = 0 + 1;

this.cnt = 0 + 1;

this.cnt = 1;

this.cnt = 1;

CIS120 / Spring 2013




Synchronization

Java provides the synchronized keyword
— only one thread at a time can be ‘active’ in a synchronized method
— careful use can rule-out races
— tradeoff: less concurrency means worse performance

Need thread safe libraries:

— java.util.concurrent has BlockingQueue and ConcurrentMap
— help rule out synchronization errors
— Note: Swing is not thread safe!

Java also provides /locks
— objects that act as synchronizers for blocks of code

Deadlock: cyclic dependency in synchronization
— Thread A waiting for lock held by B, Thread B waiting for lock held by A



Immutability!

 Note that read-only datastructures are immune to race
conditions

— It's OK for multiple threads to read a heap location simultaneously
— Less need for locking, synchronization

* As always: immutable data structures simplify your code



