Programming Languages
and Techniques
(C1S120)

Lecture 38

December 7, 2015

Recap

Announcements

* Game Project

— Due: TOMORROW Tuesday December 8t at 11:59pm
— Hard Deadline (no late days)
* to allow time for grading meetings during reading days

FINAL EXAM

e Wednesday, December 16, noon — 2PM
Two locations:
— CHEM 102 last names A -R
— LEVH 101 last names S - Z

 Comprehensive exam over course concepts:
— OCaml material (though we won’t worry much about syntax)
— All Java material (emphasizing material since midterm 2)
— all course content
— old exams posted

 Closed book, but:

— One letter-sized, handwritten sheet of notes allowed

CIS120 / Spring 2013

Review Sessions

Mock Exam

— Sunday, December 13th

— 4:00pm — 8:00pm (pizza at 6:00pm!)
— Location: TBA

Review Session

— Monday, December 14th
— 8:00pm —10:00pm
— Location: TBA

Office Hours

— See online Schedule

Look for Details on Piazza

Grade database

e Check your scores online for errors (starting tomorrow)
— Homework 1-6, Midterms 1&2, class participation
— Lab attendance, HW 7,8 grades will be entered soon!

* Send mail to tas120@seas if you are missing any grades

* You are looking at the same database | will use to calculate
final grades...

— Homework 50% (50%/9 per project)
— Labs 6%
— First midterm 12%
— Second midterm 12%
— Final exam 18%

— Class participation 2%

How is the Game Project going so far?

started coding

it's somewhat working
it's mostly working
debugging / polishing
done!

CUE

What did you think of the use of clickers this semester?

1. worked well — definitely keep using them

2. no strong opinion
3. didn’tlike it

CIS 120 Recap

From Day 1

e CIS120is acourse in program design

e Practical skills:

— ability to write larger (~1000 lines)

programs

— increased independence
("working without a recipe")

reburn following may elemeanbeglnneed

library ava reference operations ynit

implements uses programmlng

== FUNCLION o

ASQM time many Displaceable size backelse

— test-driven development, principled

debugging

* Conceptual foundations:
— common data structures and algorithms

— several different programming idioms
— focus on modularity and

compositionality

— derived from first principles throughout

|t will be fun!

CIS120

Promise: A challenging
but rewarding course.

ohjects
motse = ,7heap ol fleldq IOO Node
e Int Point
mode. expressmn u bl Ic Ue\l;l‘g local
excepbion
case "W workspace nexbt variable

~class
read
figure functions

bU sha point element
“FeteronValuie b cost

—programl© U~
first ' Figure 58 Oca private "yne
Ca"uslng prov Mesflleballglasbo(:h
juamsrb Iengbh
M Note g field input
seb like bree”
extenl g GUI
Empty d b head write

"‘.’°‘Tm’s’tbdifferenl;”""b whether mebGhods
implemen Gable
graphics use oRjec b df;wl'"g Bypes

Design Recipe

Understand the problem
What are the relevant concepts and how do they relate?

Formalize the interface
How should the program interact with its environment?

Write test cases
How does the program behave on typical inputs? On unusual
ones? On erroneous ones?

Implement the required behavior
Often by decomposing the problem into simpler ones and
applying the same recipe to each

Testing

* Key concept: Write tests before coding
— "test first" methodology

« Examples: s.((}" P
— Simple assertions for declarative d} esr,(
programs (or subprograms) A ,09
— Longer (and more) tests for stateful TDD circle AXN
programs / subprograms of life &

— Informal tests for GUIs

(can be automated through tools) ‘ ’

t Why? Refackor

— Tests clarify the specification of the problem
— Thinking about tests informs the implementation

— Tests help with extending and refactoring code later
e automatic check that things are not getting broken
— Industry practice

Functional/Procedural Abstraction
* Concept: Don't Repeat Yourself! ' '
— Find ways to generalize code so m m m
it can be reused in multiple situations m ﬁ R

pre e [

——— e —

* Examples: Functions/methods, wX
generics, higher-order functions,
interfaces, subtyping, abstract classes

C Peeanse

——

Pablo Picasso, Bull (plates | - XI) 1945

e Why?
— Duplicated functionality = duplicated bugs

— Duplicated functionality = more bugs waiting to happen
— Good abstractions make code easier to read, modify, maintain

Persistent data structures

 Concept: Store data in persistent, i :
implement computation as tray” Recursion is the natural way of
computing a function f(t) when t

structures . .
belongs to an inductive data type:

1. Determine the value of f for
the base case(s).

2. Compute f for larger cases by
combining the results of
recursively calling f on smaller
cases.

3. Same idea as mathematical

induction (a la CIS 160)

een various parts of the program, all interfaces

 Examples: immutable lists anc
images and Strings in Java (HW

e Why?

— Simple model of com

— Simple interface:
communicatio
are explicit)

— Recursion‘amenable to mathematical analysis (CIS 160/121)
— Plays well with parallelism

Tree Structures

Lists (i.e. “unary” trees)

Simple binary trees

Trees with invariants: e.g. binary

search trees

Widget trees: screen layout +

event routing

Swing components

Trees are ubiquitous in CS!

— file system organization
— languages, compilers

let rec length (l:int 1list) : int =
begin match 1 with
| [1 > 0
| _::tl -> 1 + length(tl)

lot
e r and Isots Apes
of time |

border ir Trhandle e

— domain name hierarchy www.google.com 1 -t

label space

label |, .handle e

First-class computation

* Concept: code is a form of data that can be defined by
functions, methods, or objects (including anonymous ones),
stored in data structures, and passed to other functions

 Examples: map, filter, fold (HW4), pixel transformers (HW6),

event listeners (HWS5, 7, 9)

cell.addMouselListener(new MouseAdapter() {
public void mouse(Clicked(MouseEvent e) {

selectCell(cell);
}

};
e Why?
— Powerful tool for abstraction: can factor out design patterns that differ
only in certain computations

— Heavily used for reactive programming, where data structures store
"reactions" to various events

Types, Generics, and Subtyping

* Concept: Static type systems prevent errors. Every expression
has a static type, and OCaml/Java use the types to rule out
buggy programs. Generics and subtyping make types more
flexible and allow for better code reuse.

let rec contains (x:’a) (1:’a list) : bool =
begin match 1 with

| [] -> false
| h::tl -> x = a ||l (contains x tl)

end
e Why?

— Easier to fix problems indicated by a type error than to write a test
case and then figure out why the test case fails

— Promotes refactoring: type checking ensures that basic invariants
about the program are maintained

Abstract types and encapsulation

* Concept: Type abstraction hides the actual
implementation of a data structure, describes a
data structure by its interface (what it does vs.
how it is represented), supports reasoning with
invariants

 Examples: Set/Map interface (HW3), queues in
\“]d access concrete representation

) i abstract view
Invariants are a crucial tool for

reasoning about data structures:

1. Establish the invariants when . . @
entation without
you create the structure.
2. Preserve the invariants when about the @

you modify the structure.

Mutable data

Concept: Some data structures are ephemeral: computations
mutate them over time

Examples: queues, deques (HW4), GUI state (HWS5, 9),
arrays (HW 6), dynamic arrays, dictionaries (HW8)

Why?
— Common in OO programming, which simulates the transformations that
objects undergo when interacting with their environment

— Heavily used for event-based programming, where different parts of the
application communicate via shared state

— Default style for Java libraries (collections, etc.)

head | | v 1 / v 2

tail | \ next | 4 next '

A queue with two elements

Sequences, Sets, Maps

Specific abstract data types: sequences, sets, and finite maps

Examples: HW3, Java Collections, HW 7, 8

« Why?
— These abstract data types come up again and again

— Need aggregate data structures (collections) no matter what language you
are programming in

— Need to be able to choose the data structure with the right semantics

Dictionary
_ kudos only
is a type of
Corrector ~ «--+ YL GEEEND Vi
makes use of provided
FileCorrector JJ
SwapCorrector
Levenshtein SpellChecker SpellCheckerRunner
Token T
You run the
TokenScanner

spell checker
with this

Lists, Trees, BSTs, Queues, and Arrays

* Concept: specific implementations for abstract types
 Examples: HW2-4, Java Collections

e Why?
— Need some concrete implementation of the abstract types

— Different implementations have different trade-offs. Need to understand
these trade-offs to use them well.

— For example: BSTs use their invariants to speed up lookup operations
compared to linked lists.

interface Set {boolean isEmpty(); ...}

’head
tail

A queue with two elements

Abstract Stack Machine

 Concept: The Abstract Stack Machine is a detailed model of
the execution of OCaml/Java

 Example: throughout the semester!

e Why?

To know what your program does without running it

To understand tricky features of Java/OCaml language (aliasing, first-
class functions, exceptions, dynamic dispatch)

To help understand the programming models of other languages:
Javascript, Python, C++, CH, ...

To predict performance and space usage behaviors

YR
ERER P
L BT
|
:ww
| i,

=

LLNREINE

re———

=

—
T
]
_wa)
-
Fout]
"
e
Cme

W

Rl
-
-
-
. e———

-

r———

re——
re————
re———

—
-——
—
i
ome |1]|]
Cme | 3| e

1

-4

re———
re———
e —
re———

-——
—
Cme | 3| e

_wa
ome |1]| <]

o~

1

r——
re————
e —
re————

A
_wa)
-
[]
owe | 1|
Cwme | 3|

1

.-

r——
r——
re———

Event-Driven programming

* Concept: Structure a program by associating "handlers" that
run in reaction to program events. Handlers typically interact
with the rest of the program by modifying shared state.

* Examples: GUI programming in OCaml and Java

[] @ %/ OCaml graphics

i WhY? o O
— Practice with reasoning about o [\N\I\
shared state

— Practice with first-class functions

’
-
.

— Necessary for programming with 0

@Pointl |O Line| |O Ellipse| |O Textl |®Thick lines|

— Common in GUI applications e N EOEES00E [

Text buffer:
————

Why some other language than Java?

* Level playing field for students with varying backgrounds
coming into the same class

* Two points of comparison allow us to emphasize language-
independent concepts

...but, why specifically OCaml?

“Y40Caml

Rich, orthogonal vocabulary

In Java: int, A[], Object, Interfaces
In OCaml:

— primitives

— arrays

— objects

— datatypes (including lists, trees, and options)
— records

— refs

— first-class functions

— abstract types

All of the above can be implemented in
Java, but untangling various use cases of
objects is subtle

Concepts (like generics) can be studied in
isolation, fewer intricate interactions with
the rest of the language

Functional Programming

In Java, every reference is mutable and
optional by default

In OCaml, persistent data structures are the
default. Furthermore, the type system keeps
track of what is and is not mutable, and what
is and is not optional

Advantages of immutable/persistent data

structures

— Don't have to keep track of aliasing. Interface to the
data structure is simpler

— Often easier to think in terms of "transforming" data
structures than "modifying" data structures

— Simpler implementation (Compare lists and trees to
gueues and deques)

— Powerful evaluation model (substitution + recursion).

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL RECURSION 15
IT5 OWN REWARD.

P&

ONEDOES NOT SIMPL

&
\
v A

M& A DATASTRUCTURE

Who uses OCaml?

_) W (¢
= . S (7
inte f book Y NE STREE
dCeD00K. > = A §] |
&) ﬂ.’ W *
IHPHN

LexiFi GO ugle CiTR!x'

| MLstate

AAAAAAAA

CIS120

Object Oriented Programming

* Provides a different way of decomposing programs
e Basic principles:

— Encapsulation of local, mutable state

— Inheritance to share code

— Dynamic dispatch to select which code gets run

* but why specifically Java? Java

Important Ecosystem

Canonical example of OO language design
Widely used: Desktop / Server / Android / etc.

Language Rank Types Spectrum Ranking '
Industrial strength tools 1. Java S0
— Eclipse 2. C =
— JUnit testing framework 3. C++ WisE
— Profilers, debuggers, ... 4. Python ® o

Libraries:

— Collections KEEP
— 1/0 libraries CALM
— Swing AND

— . LEARN JAVA

rrrrr nArP osen com

What Next?

Classes:

CIS 121, 262, 320 — data structures, performance, computational
complexity

CIS 19x — programming languages
e C++, CH#, Python, Haskell, Ruby on Rails, iPhone programming
CIS 240 — lower-level: hardware, gates, assembly, C programming
CIS 341 — compilers (projects in OCaml)
CIS 371, 380 — hardware and OS’s
CIS 552 — advanced programming

And many more!

Penn
Engineering

The Craft of Programming

* The Pragmatic Programmer: he

: _
Praomartic
From Journeyman to Master Proorammer
- L ‘

by Andrew Hunt and David Thomas

it covers style, effective use of tools, and

— Not about a particular programming language, :
good practices for developing programs.

\ndrew Huont
David Thomas

Joshua Bloch oo %

e * Effective Java

Effective Java by Joshua Bloch

Second Edition

— Technical advice and wisdom about using Java for
building software. The views we have espoused in

this course share much of the same design
philosophy.

> ' 7
SoN NPT <
Y Sun Java

Craft of Programming

* Real World OCaml
by Yaron Minsky, Anil Madhavpeddy,
and Jason Hickey

A \]

% 3

— Using OCaml in practice: learn how to leverage R i N
‘ ' \

O'REILLY"

its rich types, module system, libraries, and
tools to build reliable, efficient software.

— https://realworldocaml.org/ Real WOﬂd
OCaml

FUNCTIONAL PROGRAMMING FOR THE MASSES

Yaron Minsky, Anil Madhavapeddy
& Jason Hickey

* Explore related Languages:

)k Haskell ’Scala O Clojure

Ways to get Involved

o e
S~
BN APPS

PENN

Undergraduate

(Wics Research

Become a TA!

Women in Computer Science

Parting Thoughts

* Improve CIS 120:
— End-of-term survey will be sent soon
— Penn Course evaluations also provide useful feedback
— We take them seriously: please complete them!

r 3
|£ | Image Processing " l = | B |

RotateCW

RotateCCW

Mirror vertical

Mirror horizontal

Simple transform

Contrast

Reduce palette

Blur

Flood

Thanks!

let rec length (l:int 1list) : int =
begin match 1 with
| [J] -> 0
| _::tl -> 1 + length(tl)
end

ece

AAAA
ACAT |

AAGA

#foo

GCAT TCGT

TAGA

GAGA

Join

.. Join

What channel do you want to join?

#bar

|

Pennstagram

What channel do you want to join?

|#baz

) —

Hey, kids

|\| OCaml graphics

E IO Ellipse| |O Textl |Thick lines|

D EEE®0O N Current COIOPD

| Load newimage | | Saveimage | | undo | |

Quit |

RotateCW
RotateCCW
Border
Simple transform
Color scale
Contrast
Reduce palette
alpha-Blend
Vignette

Blur

HRaaOa0cace

Flood

1890s

Pin Hole

Zombie

Plastic

Custom

<---q
1
I
I
a---q
I
I
I
I
I
I
I
I
- --q
I
I
<--=-

kudos only
is a type of _
makes use of provided

<« - SpellCheckerRunner

T

You run the
spell checker
with this

Did you attend class today?

yes
yes
yes
yes
maybe

S

