
CIS 120 Final Exam December 17, 2012

SOLUTIONS

1

1. True or False (20 points)

All of the following questions refer to Java programming.

a. T F Whenever you override the equals method of a class, you should be sure to override
the hashCode method compatibly.

b. T F If A is a subtype of B, then Set<A> is a subtype of Set.

c. T F When using the Java IO libraries, one should generally wrap a FileReader object
inside a BufferedReader to prevent significant performance problems.

d. T F It is possible to create an object of type Set<int>.

e. T F An object’s static type is always a subtype of its dynamic type.

f. T F The value null can be assigned to a variable of any type.

g. T F A method with the following declaration definitely will not throw an IOException

to a calling context.
public void m() {...}

h. T F The @Override annotation prevents accidental overloading of a method.

i. T F In some cases, dynamic dispatch of a method invocation requires the Java Abstract
Stack machine to search the entire stack to find the appropriate code to run next.

j. T F It is not possible to call a method declared as static from within a non-static
method.

Rubric: 2 points apiece.

2

2. Java Design Problem (30 points)

A stack is a collection (like a list or a set) that provides restricted access to an ordered sequence of
elements. In this problem, you will apply the design process to implement a linked stack structure;
in Problem 3 you will write a program that uses the stack abstraction.

Step 1: Understand the problem. A stack is a collection that offers access only to the top element
of an ordered sequence. Think of a stack as a “pile” of objects: you can add something to the top
of the stack or take something off the top, but you can’t get to a lower object without removing the
ones above it first. We saw one use of a stack in the abstract stack machine in which the elements
of the stack were the variable-value binding pairs. Here we will develop a generic stack collection.
(There is nothing to do for this step, your understanding will be demonstrated below.)

Step 2: Design the interface. Stacks offer three operations: You can push an element on to the
top the stack, you can pop an element from the top of the stack (leaving the rest of the elements
alone), or you can ask whether the stack is empty. We thus represent the stack interface in Java
like this:
public interface Stack<A> {

// test whether the stack has any elements
boolean isEmpty();

// adds elt to the top of the stack
void push(A elt);

// returns the top of the stack (if any)
// throws NoSuchElementException of the stack is empty
A pop();

}

a. (2 points) Suppose you were going to use the java.util standard libraries. Which of the
following types could most naturally be used as the underlying representation of a stack in a
class that implements the interface Stack<A>? (Choose one answer.)

• HashSet<A>

• LinkedList<A>

• TreeMap<A,A>

• Object[]

• Queue<Integer>

b. T F (2 points) It is possible to create a class that implements both the Stack<A>

and Set<A> interfaces. (true or false)

c. T F (2 points) It is possible to create a class that implements both the Stack<A>

and Set<Integer> interfaces. (true or false)

3

In the rest of this problem, you will implement the Stack<A> interface without using the java.util
libraries. The class is called LinkedStack<A>, and it will use a singly-linked, mutable data struc-
ture similar to the queue and deque types from homework 5.

Step 3: Write test cases. A stack is supposed to exhibit “last in, first out” (LIFO) behavior: the
most recent element pushed is the next one that will be popped. Complete the following test cases
that demonstrate this behavior. We have also provided two complete example tests.

Rubric: 1 point per blank (6 points total)
import ...;
import java.util.NoSuchElementException;

public class LinkedStackTest {
@Test
public void testIsEmpty() {

LinkedStack<Integer> s = new LinkedStack<Integer>();
assertEquals(true, s.isEmpty());

}

@Test
public void testPopEmptyException() {

LinkedStack<Integer> s = new LinkedStack<Integer>();
try {

s.pop();
Assert.fail();

} catch (NoSuchElementException e) { // expected outcome
}

}
// −−−−−−−−−−−−−−−−− FILL IN HOLES BELOW −−−−−−−−−−−−−−−−−−−−−−−

@Test
public void testPushIsNotEmpty() {

LinkedStack<Integer> s = new LinkedStack<Integer>();
s.push(3);
assertEquals(false, s.isEmpty());

}

@Test
public void testPushPushPopPop() {

LinkedStack<Integer> s = new LinkedStack<Integer>();
s.push(3);
s.push(4);
assertEquals((Integer) 4, s.pop());
assertEquals((Integer) 3, s.pop());
assertEquals(true, s.isEmpty());

}

}

4

Step 4: Implement it. Implement the LinkedStack<A> class. Use an auxiliary inner class called
Node to store the (singly-linked, mutable) stack structure—it doesn’t need any methods. Do not
use any library classes; do not use arrays; you should not need to catch any exceptions. The
LinkedStack<A> default constructor is sufficient. Your code should pass the tests given above.
import java.util.NoSuchElementException;

public class LinkedStack<A> implements Stack<A> {
// field (s) of the LinkedStack<A> class
private Node top;

// private class of Node data
private class Node {

// field (s) of the Node class
A elt;
Node next;

// constructor of the Node class
Node(A elt, Node next) {

this.elt = elt;
this.next = next;

}
}

// returns true if the Stack is empty
public boolean isEmpty() {

return (top == null);
}

// pushes an element onto the top of the stack
public void push(A elt) {

Node newTop = new Node(elt, top);
top = newTop;

}

// pops the top element off the stack , updating
// the stack in place
// throws a NoSuchElementException if the stack is empty
public A pop() {

if (this.isEmpty())
throw new NoSuchElementException();

Node t = top;
top = t.next;
return t.elt;

}
}

Rubric:

• 2 points for private field (1 pt for private, 1 pt for field)

• 4 points for node class (1 pt for each field, 2 pts for correct constructor)

• 2 points for isEmpty

5

• 4 points for push (2 pts for new node, 2 pts for reassign)

• 6 points for pop (2 pts for exception, 2 pts for top/t.next , 2 pts for returning t.elt not t)

6

3. Java Programming (20 points)

In this problem, you will write a Java program that uses the Stack<A> abstraction from Problem 2.
Consider the problem of matching well-nested brackets when reading characters from some data
source. For example, you might want to determine whether each open parenthesis character ’(’
is later followed by a matching ’)’, and similarly for ’{’ and ’}’ and ’[’ and ’]’. Eclipse uses
such an algorithm to check that a Java program doesn’t have syntax errors.

One subtlety is that such brackets should not only match, but they should also be well-nested. The
string "([)]" is not well-nested because the [is closed by) and not], as it should be. On the
other hand, the string "()[()]" is well-nested.

We have written the following test cases that illustrate many more examples of the desired behavior
of this method, called BracketMatcher.matched. For the purposes of this problem, the matcher
simply ignores non-bracket characters. Be sure you understand these tests before continuing.
import static org.junit.Assert.*;
import java.io.Reader;
import java.io.StringReader;
import org.junit.Test;

public class BracketMatcherTest {
private void testString(boolean matched, String s) {

Reader r = new StringReader(s);
assertEquals(matched, BracketMatcher.matched(r));

}

@Test
public void testMatchesEmpty() {

testString(true, "");
}

@Test
public void testNoMatchOpen() {

testString(false, "(");
}

@Test
public void testNoMatchClose() {

testString(false, ")");
}

@Test
public void testMatchOpenClose() {

testString(true, "()");
}

@Test
public void testNoMatchOpenOpenClose() {

testString(false, "(()");
}

@Test
public void testMatchOpenOpenCloseClose() {

testString(true, "(())");
}

7

@Test
public void testMatchOpenOpenCloseCloseJunk() {

testString(true, "(x(e)xxabxx)");
}

@Test
public void testMatchOpen1Open2Close2Close1() {

testString(true, "([])");
}

@Test
public void testNoMatchOpen1Open2Close1Close2() {

testString(false, "([)]");
}

@Test
public void testMatchProblemStatement() {

testString(true, "()[()]");
}

@Test
public void testNoMatchOpen1Open2Close1Close2Junk() {

testString(false, "(ax[asda)b]");
}

@Test
public void testMatchOpen3Open2Open1Close1Close2Close3() {

testString(true, "{[()]}");
}

}

How do we implement such a matching algorithm? We read through the sequence of characters
(provided by a Reader object as in the Spellchecking project). Each time we encounter a left
bracket (like ’[’), we push it onto a stack. Each time we encounter a right-bracket (like ’]’), we
pop the top of the stack and check to make sure that it matches. If we ever hit a mismatch, or if
the stack is empty when it shouldn’t be, then the sequence isn’t well-nested. After reading all of
the sequence, if the stack isn’t empty, the sequence isn’t well matched.

Implement this algorithm on the following page. We have provided a couple utility methods that
may be of use. Your code should pass all of the tests above and it should never raise any exceptions.

• For your convenience, the documentation of the read() method of the Reader class is found
in the Appendix — you should not need to use any other methods from the reader class.

• You may need to use the intValue() method that is provided by the Integer class. It returns
the int underlying a given Integer object. For example, (new Integer(3)).intValue()

evaluates to 3.

8

import java.io.IOException;
import java.io.Reader;
public class BracketMatcher {

// returns true if c is a legal left bracket
private static boolean isLeftBracket(int c) {

return c == ’(’ || c == ’{’ || c == ’[’;
}

// returns true if c is a legal right bracket
private static boolean isRightBracket(int c) {

return c == ’)’ || c == ’}’ || c == ’]’;
}

// returns true if l and r are a matched bracket pair
private static boolean isBracketPair(int l, int r) {

return (l == ’(’ && r == ’)’)
||
(l == ’{’ && r == ’}’)
||
(l == ’[’ && r == ’]’);

}

// Returns true if the sequence of brackets read from r form well−nested matching pairs .
// Ignores non−bracket characters .
public static boolean matched(Reader r) {

if (r == null) return false; // OPTIONAL
Stack<Integer> s = new LinkedStack<Integer>();
try {

int c = r.read();
while (c != -1) {

if (isLeftBracket(c))
s.push(c);

if (isRightBracket(c)) {
if (s.isEmpty()) {

return false;
} else {

int d = s.pop().intValue();
if (!isBracketPair(d, c))

return false;
}

}
c = r.read();

}
} catch (IOException e) {

return false;
}
if (s.isEmpty())

return true;
return false;

}
}

9

Rubric:

• Instantiating Stack (1 pt. typing, 1 pt. constructor)

• Reading chars: 1 pt. read before first check, 1 pt. update around loop

• While loop: 2 pts. correct condition

• Try/Catch: exists 1 pt., correct exception 1 pt.

• Dealing with left, right bracket conditions: 1 pt.

• Push: 2 pt.

• Empty case: 2 pt.

• pop: 2 pt., use of intValue() 1 pt.

• correct call to isBracketPair 2 pt.

• empty at the end – correct return: 2 pt.

10

4. Abstract Stack Machine (10 points)

Consider the following Java class (which is similar to the many linked datastructures we’ve seen
in class):
public class DNode {

String name;
DNode next;
DNode prev;

DNode(String name, DNode n, DNode p) {
this.name = name;
this.next = n;
this.prev = p;

}

void foo() { ... }
}

Suppose that, for some inscrutable reason, you wanted to write a program to construct the follow-
ing stack and heap configuration:Construc)ng+an+Object+

DNode!

name! “A”!

next! null!

prev!

CIS120+/+Spring+2011+

Stack+ Heap+

x! DNode!

name! “B”!

next!
prev!

Write a sequence of Java commands for the body of method foo that would create the ASM
configuration shown above (ignore the workspace that would be saved on the stack by a call to
foo()). Note that there is only one variable on the stack.

Rubric;

• 4 points for constructors: (1 points for both use of new DNode constructor, 1 point for correct
arguments)

• 3 points for “wiring”: 1 point per pointer

• 3 points for stack shape: 1 point for type declaration, 2 points for only using variable x

Two example solutions (there are many others):
DNode x = new DNode("B", null, null);
x.next = x;
x = new DNode("A", null, x);
x.prev.prev = x;

11

or
DNode x = new DNode("A", null, null);
x = new DNode("B", null, x);
x.next = x;
x.prev.prev = x;
x = x.prev;

12

5. Java’s Type System (8 points)

Consider the following class definitions:
class S {
}

class T extends S {
}

class U extends S {
}

class V extends U {
}

For each of the questions below, circle all the correct answers—there may be zero, one, or more.

a. What is the static type of x in the code below?
S x = new V();
x = new U();

a. Object b. S c. T d. U e. V

b. What is the dynamic type of the value stored in x after running the code below?

S x = new V();
x = new U();

a. Object b. S c. T d. U e. V

c. Which types can we place in the hole marked __?__ below so that no ClassCastException

is thrown when this program is run?

Object o = new U();
Object x = (__?__)o;

a. Object b. S c. T d. U e. V

d. Which types, when placed in the hole marked __?__ below, cause the compiler to generate
an “incompatible types” error message?

T t = new T();
boolean b = t instanceof __?__;

a. Object b. S c. T d. U e. V

Rubric:

• 1 pt. for each of the seven circles.
• no extra circles allowed in first two parts
• 8th point if no extra circles in last two parts
• -1 point for each additional circle after 2

13

6. First-class Functions and fold (12 points)

Recall the OCaml definition of binary trees, and consider the fold function for such trees:
type ’a tree =
| Empty
| Node of (’a tree) * ’a * (’a tree)

let rec fold (combine : ’a -> ’b -> ’b -> ’b) (base : ’b) (t : ’a tree) : ’b =
begin match t with
| Empty -> base
| Node(lt, x, rt) -> combine x (fold combine base lt) (fold combine base rt)

end

In this problem, you will explain how many functions can be written in terms of fold. Consider
the following recursive tree functions:
let rec sum (t : int tree) : int =
begin match t with
| Empty -> 0
| Node(lt, x, rt) -> (sum lt) + x + (sum rt)

end

let rec size (t : ’a tree) : int =
begin match t with
| Empty -> 0
| Node(lt, _, rt) -> (size lt) + 1 + (size rt)

end

let rec is_full (t : ’a tree) : bool =
begin match t with
| Empty -> true
| Node(lt, _, rt) ->

((size lt) = (size rt)) && is_full lt && is_full rt
end

let rec preorder (t : ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node(lt, x, rt) -> x::(preorder lt)@(preorder rt)

end

let rec postorder (t : ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node(lt, x, rt) -> (postorder lt)@(postorder rt)@[x]

end

let rec inorder (t : ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node(lt, x, rt) -> (inorder lt)@[x]@(inorder rt)

end

14

For each function above, select the combination of combine and base arguments to fold such that
you get an equivalent implementation by writing:
fun t -> fold combine base t

Rubric: 1 pt. per blank

combine base

sum d 0

size c 0

is_full none none

preorder h or i []

postorder f []

inorder g []

Your choices for combine and base are enumerated below. Write the choice a–j for the combine

function and the choice a–j for base. If no choice works (i.e. the function cannot be expressed as
a fold) write “none” in both slots. You may use the same choice more than once.

Combine choices: Base choices:

(a) (fun x lv rv -> Node(rv, x, lv))

(b) (fun x lv rv -> lv + rv)

(c) (fun x lv rv -> lv + 1 + rv)

(d) (fun x lv rv -> lv + x + rv)

(e) (fun x lv rv -> (size lv) = (size rv))

(f) (fun x lv rv -> lv@rv@[x])

(g) (fun x lv rv -> lv@[x]@rv)

(h) (fun x lv rv -> [x]@lv@rv)

(i) (fun x lv rv -> x::lv@rv)

(j) (fun x lv rv -> lv@rv@x)

(a) true

(b) false

(c) 0

(d) 1

(e) Empty

(f) []

(g) [x]

(h) lv

(i) rv

(j) lv@rv

15

7. Binary Search Trees & OCaml programming (20 points)

This problem uses the same OCaml type of trees as in Problem 6, repeated here for your reference:
type ’a tree =
| Empty
| Node of (’a tree) * ’a * (’a tree)

a. State the binary search tree invariant in words. We have done the case for Empty trees:

• The Empty tree is a binary search tree.
• The tree Node(lt, x, rt) is a binary search tree if and only if:
lt and rt are both binary search trees and x is greater than all values in lt and less than
all values in rt.
Rubric: 5 pts.: 2 pts. for lt and rt are both bsts. 3 pts for less-than and greater-than
constrainta

b. Write an OCaml function range that, given an integer binary search
tree t and integers low and hi such that low < hi, returns the list of
BST nodes such that low <= x <= hi (in sorted order). For example,
range t 1 6 would yield [1;2;3;5] when t is the tree to the right.
Use the binary search tree invariant to avoid processing more of the tree
than necessary. If you need help remembering OCaml syntax, see the
examples in problem 6.

3
/ \
/ \
1 8
/ \ /

0 2 5
\
7

(∗ Assumes: t is a binary search tree ∗)
let rec range (t:int tree) (low:int) (hi:int) : int list =
begin match t with
| Empty -> []
| Node(lt,x,rt) ->
if low <= x && x <= hi
then (range lt low hi) @ [x] @ (range rt low hi)
else if x < low
then range rt low hi
else range lt low hi

end

Rubric: 15 pts.

• 3 pts for base case
• 5 pts for x is in range and recursive calls
• 7 pts for using invariant to search when x is not in range

16

Reference Appendix
Make sure all of your answers are written in your exam booklet. These pages are provided for your
reference—we will not grade any answers written in this section.

Reader JavaDoc (excerpt) for problem 3
From the Reader JavaDocs:

• int java.io.Reader.read() throws IOException

Reads a single character. This method will block until a character is available, an I/O error occurs,
or the end of the stream is reached.

Subclasses that intend to support efficient single-character input should override this method.

Returns: The character read, as an integer in the range 0 to 65535 (0x00-0xffff), or -1 if the
end of the stream has been reached

Throws: IOException — If an I/O error occurs

17

