
CIS 120 Midterm I October 4, 2013

Name (printed):

Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

1 /20

2 /10

3 /16

4 /14

5 /20

6 /20

Total /100

• Do not begin the exam until you are told to do so.

• You have 50 minutes to complete the exam.

• There are 100 total points.

• Make sure your name and Pennkey (a.k.a. username) is on the top of this page.

• Be sure to allow enough time for all the problems—skim the entire exam first to get a sense of
what there is to do.

1

1. List Processing (20 points)
For each of the following programs, write the value computed for r:

a. let x : int = 42
let f (y : int) : int = y + x
let x : int = 120

let r : int = f 0

Answer: r =

b. let rec f (l : ’a list) : (’a list * ’a list) =
begin match l with
| [] -> ([], [])
| [x] -> (l , [])
| u::v::w ->

let (y,z) : (’a list * ’a list) = f w in
(u::y, v::z)

end

let r : (’a list * ’a list) = f [1;2;3;4;5]

Answer: r =

c. let rec f (x : (’a -> ’b) list) (y : ’a) : ’b list =
begin match x with
| h::t -> h y :: f t y
| _ -> []
end

let r : int list = f [(fun x -> - x); (fun x -> x * (x + 1))] 6

Answer: r =

d. type foo = {mutable bar : int}
let f (x : foo) (y : foo) : int * int * int =
let z = x in
x.bar <- y.bar + 1;
(x.bar, y.bar, z.bar)

let r : int * int * int = f {bar = 0} {bar = 0}

Answer: r =

2

2. Types (10 points)
For each OCaml value or function definition below, fill in the blank where the type annotation
could go or write “ill typed” if there is a type error. If an expression can have multiple types, give
the most generic one. Recall that the @ operator appends two lists together in OCaml. We have
done the first one for you. Consider the definitions to be below the following code:
module type MAP = sig
type (’a * ’b) map
val fromList : (’a * ’b) list -> (’a * ’b) map

end

module LMap : MAP = struct
type (’a * ’b) map = (’a * ’b) list
let fromList (l : (’a * ’b) list) = l

end

open LMap;;

let x : ___________ int list _____________________ = [2 + 2]

let a : __ = 42 ˆ " 42"

let b : __ = [42] :: [[]]

let c : __ = [42] :: [42]

let d : __ = [("cis", 120)]

let e : __ = fromList [(120, 42)]

let f : __ =
fromList ([("benjamin",42)] @ [("pierce", 120)])

let g : __ =
fromList [("benjamin", "cis"); ("pierce", 120)]

let h : __ =
fromList [(120,fromList [("benjamin", 42)])]

let i : __ = (fun f -> f 42)

let j : __ = (fun x -> x + "foo")

3

3. Binary Trees and Binary Search Trees (16 points)
Recall the definition of generic binary trees and the BST insert function:
type ’a tree =

| Empty
| Node of ’a tree * ’a * ’a tree

let rec insert (t:’a tree) (n:’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

a. Circle the trees that satisfy the binary search tree invariant. (Note that we have omitted the
Empty nodes from these pictures, to reduce clutter.)

(a) (b) (c) (d) (e)

1 4 4 1 4
\ / \ / \ \ \
2 2 6 1 6 3 5
\ / \ / \ \ / \ \
3 1 5 0 2 8 2 4 5
\ \
4 6

4

b. For each definition below, circle the letter of the tree that it constructs or “none of the above”.

(a) (b) (c) (d) (e)

1 4 4 1 4
\ / \ / \ \ \
2 2 6 1 6 3 5
\ / \ / \ \ / \ \
3 1 5 0 2 8 2 4 5
\ \
4 6

let t1 : int tree =
Node(Empty, 1, Node(Node(Empty,2,Empty), 3, Node (Empty,4,Empty)))

(a) (b) (c) (d) (e) none of the above

let t2 : int tree =
insert (insert (insert (insert Empty 1) 2) 3) 4

(a) (b) (c) (d) (e) none of the above

let t3 : int tree =
insert (insert (insert (insert Empty 4) 5) 5) 6

(a) (b) (c) (d) (e) none of the above

let t4 : int tree =
insert (Node ((insert (insert (insert Empty 2) 1) 5), 4, Empty) 6

(a) (b) (c) (d) (e) none of the above

5

4. Modules (14 points)
For this question, suppose we’ve written the following definition of a module signature MOD and
two modules ModOne and ModTwo conforming to the signature MOD:

module type MOD = sig
type t
val x : t
val f : t -> int

end

module ModOne : MOD = struct
type t = bool
let x = false
let f (b:t) : int = if b then 1 else 0

end

module ModTwo : MOD = struct
type t = int
let x = 41
let y = 16
let f (b:t) : int = b + 1

end

a. Does the following module definition typecheck? If not, briefly (one sentence) explain why
not.

module MyMod3 : MOD = struct
type t = int
let x = 16

end

b. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f ModOne.x)

c. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f true)

6

d. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModTwo.f ModTwo.y)

e. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f ModTwo.x)

f. Does the following client code typecheck? If so, what value does it print? If not, briefly
explain why not.

;; print_int (ModOne.f ModOne.x + ModTwo.f ModTwo.x)

g. List all the values that could possibly be printed when we run the following client code (for
all possible ways of filling in the body of z).

let z : ModTwo.t = ...
;; print_int (ModTwo.f z)

7

5. Program Design (20 points)
Use the four-step design methodology to implement a function called rotations that computes
all the cyclic permutation of a list, ie. given a list [v1, v2, . . . , vn] of n values (where n ≥ 0),
returns the list

[[v1; v2; . . . ; vn]; [v2; . . . ; vn; v1]; [vn; v1; . . . ; vn−1]]

also of length n.

For example, rotations [1;2;3;4] should yield the list:

[[1;2;3;4]; [2;3;4;1]; [3;4;1;2]; [4;1;2;3]]

a. Step 1 is understanding the problem. You don’t have to write anything for this part—your
answers below will demonstrate whether or not you succeeded with Step 1.

b. Step 2 is formalizing the interface. Write down the type of the rotations function as you
might find it in a .mli file or module interface.

val rotations:

c. Step 3 is writing test cases. Complete the following three tests with the expected behavior.
We have done the first one for you, based on the problem description.
Note that some test cases are better than others, and credit will be assigned accordingly: make
sure your tests cover a sufficiently broad range of “interesting” input numbers and lists. Fill
in the description string of the run_test function with a short explanation of why the test
case is interesting. Your description should not just restate the test case, e.g. ”rotations
[1;2;3]”.

i. let test () : bool =
rotations [1;2;3;4] = [[1;2;3;4]; [2;3;4;1]; [3;4;1;2]; [4;1;2;3]]

;; run_test "rotations on normal list" test

ii. let test () : bool =

(rotations ________________________________) = __________________

;; run_test "___" test

8

iii. let test () : bool =

(rotations ________________________________) = ____________________

;; run_test "___" test

d. Step 4 is implementing the program. Fill in the body of the rotations function to complete
the design. You can use @ or any of the higher order functions in the appendix in your answer.
Hint : You can also define an auxilliary function.

let rotations (l : ______________________) : ________________________ =

9

6. Higher-Order Functions (20 points)
In this problem you will be guided into coding a function cartesian, which computes the so-
called cartesian product of two lists l1 and l2 — that is, the list of all tuples (a, b) where a comes
from l1 and b comes from l2.

You should use a single higher-order function — one of transform, filter, or fold — in your
solution to each of the subproblems (except the last).

For reference, the definitions of these functions are given in the appendix.

a. Write a function make_product_list that, given a list l and a value a, returns a list of tuples
whose first element is a and whose second elements ranges over all the elements of l. For
example, make_product_list [3;4;5] 1 = [(1,3);(1,4);(1,5)].
Your answer should be a call of a single higher-order function with some argument

let make_product_list (l : ’b list) (a : ’a): (’a * ’b) list =

b. Write a function cartesian_helper that given a list [a1;a2;...;an] and another
[b1;b2;...;bm], where m,n ≥ 0, produces the following list of lists:
[[(a1,b1); (a1,b2); ... ; (a1,bm)];

[(a2,b1); (a2,b2); ... ; (a2,bm)];
...

[(an,b1); (an,b2); ... ; (an,bm)]]

For example,
cartesian_helper [1;2] [3;4] = [[(1, 3); (1, 4)]; [(2, 3); (2, 4)]].

Hint: You should use a higher-order function and make_product_list.

let cartesian_helper (l1 : ’a list) (l2 : ’b list) : (’a * ’b) list list =

10

c. Write a function concat that given a list of lists produces a single list that is the concatenation
of all the elements of the original list. For example:

concat [[(1,3);(1,4)];[(2,3);(2,4)]] = [(1,3);(1,4);(2,3);(2,4)]

Again, you answer should be a call to a single higher-order function with some argument.

let concat (l : ’a list list) : ’a list =

d. Finally, use the functions you defined above to write the function cartesian, defined in the
beginning of this problem. For example,

cartesian [1;2] [3;4;5] = [(1,3);(1,4);(1,5);(2,3);(2,4);(2,5)]

Hint: Do not use any higher-order functions or recursion here. A simple combination of the
functions you have coded above should be enough!

let cartesian (l1 : ’a list) (l2 : ’b list) : (’a * ’b) list =

11

Appendix

let rec transform (f: ’a -> ’b) (x: ’a list): ’b list =
begin match x with
| [] -> []
| h :: t -> (f h) :: (transform f t)
end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list): ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)
end

let rec filter (f: ’a -> bool) (l: ’a list) : ’a list =
begin match l with
| [] -> []
| h::t -> if f h then h :: filter f t else filter f t

end

12

