
CIS 120 Midterm I February 16, 2015

SOLUTIONS

1



1. Substitution semantics (18 points)

Circle the final result of simplifying the following OCaml expressions, or “Infinite loop” if there
is no final answer. Note: the definition of the transform function appears on page 11. Also recall
that the @ operator appends lists together.

a. let rec f (x :int) (m : int list) : bool =
begin match m with
| [] -> false
| y :: t -> if x < y then f x t else false
end

in
f 3 [1;4;3]

• true

• false

• [1;4;3]

• [true; false; false]

• Infinite loop

b. let rec g (x :int) (m : int list) : bool =
begin match m with
| [] -> false
| y :: t -> if x <= y then true else g x (x :: t)
end

in
g 3 [6;4;3]

• true

• false

• [6;4;3]

• [false; false; false]

• Infinite loop

c. let j (x : int) : int -> int list =
fun (y:int) -> [x;y;x;y]

in
j 3

• 3

• [3;3]

• [3;3;3;3]

• fun (y:int) -> [3;y;3;y]

• Infinite loop

2



d. let m (x : int) : (int * bool) =
(x - 5, x > 5)

in
transform m [6;4;3]

• (1,true)

• [(1,true); (-1, false); (-2,false)]

• [1;-1;-2]

• [true; false; false]

• Infinite loop

e. let rec k (m : int -> int list) (x : int list) : int list =
begin match x with
| [] -> []
| h :: t -> m h @ k m t
end

in
k (fun (x:int) -> [x;x]) [1;2;3]

• [1;2;3]

• [1;1;2;2;3;3]

• [[1;1];[2;2];[3;3]]

• [[1];[2];[3]]

• Infinite loop

f. let rec h (m : int list list) : int list =
begin match m with
| [] -> []
| [] :: u -> 0 :: h u
| (x :: t) :: u -> 1 :: h (t :: u)
end

in
h [[1];[];[1;2]]

• [1;0;0;1;1;0]

• [1;1;2]

• [1;0;1;1]

• [[1];[];[1;1]]

• Infinite loop

Grading Scheme: 3 points each

3



2. Types (16 points)

For each OCaml value below, fill in the blank where the type annotation could go or write “ill
typed” if there is a type error on that line. Your answer should be the most specific type possible,
i.e. int list instead of ’a list.

Some of these expressions refer to values specified by the SET interface from homework 3. An
abbreviated version this interface appears on page 11 in the reference appendix. You may assume
that all of the definitions below appear outside of a module that implements this interface, such as
ULSet, and that this module has already been opened.

We have done the first one for you.

;; open ULSet

let z : ______ int list _________ = [1]

let a : __ int list ______________ = 1 :: 2 :: 3 :: []

let b : __ ill typed _____________ = 0::[[]]

let c : __ int list list _________ = [1] :: [2] :: [3] :: []

let d : __ int list ______________ = (fun x -> x :: []) 3

let e : __ int list -> int list __ = (fun x -> fun y -> x :: y) 3

let f : ___ int set -> int set ___ = add 3

let g : __ int set list __________ = [add 1 empty]

let h : ___ ill typed ____________ = add 3 [1]

Grading Scheme: 2 points each.

4



3. Binary Search Trees (14 points)

Page 13 shows an implementation of the SET interface using BSTs. This implementation preserves
the Binary Search Tree invariant.

a. What is the result of the is_bst function (shown on page 13) applied to the following trees?
Note that we have omitted the Empty nodes from these pictures, to reduce clutter. Circle
either true or false.

i. 5
/ \
2 7 true false
/ \
1 6

false

ii. 3
/ \
2 7 true false
/
2

false

iii. 2
\
3 true false
\
4

true

iv. 4
/ \
3 7 true false

/ \
6 8

true

Grading Scheme: 2 points each

5



b. Suppose we change the member function (see page 13) to the following:
let rec member (n:’a) (t:’a tree) : bool =
begin match t with
| Empty -> false
| Node (lt, x, rt) ->
if x = n then true
else if member n lt then true
else member n rt

end

This implementation calculates the same answer as the original definition of member, but the
old version is better. Briefly explain why, noting not just how this version is different but
also why this difference is important.
Answer: This implementation doesn’t take advantage of the BST invariant that is guaranteed
by the module. As a result, it may need to search the entire tree instead of just one branch.
Grading Scheme: 3 points: observes that (a) this version does not take advantage of the BST
invariant and (b) therefore must search the entire tree instead of just one path from the root
to the leaves. 2 points: answers that make sense but don’t mention both points. 1 point:
some attempt at an answer that doesn’t say anything wrong. 0 points: blank, or makes a
claim that is incorrect: says that this version is better, or says that this version calculates the
wrong answer.

c. Now suppose we change the member function (see page 13) to the following:
let rec member (n:’a) (t:’a tree) : bool =
if not (is_bst t)
then failwith "input is not a binary search tree"
else begin match t with
| Empty -> false
| Node (lt, x, rt) ->
if x = n then true
else if n < x then member n lt
else member n rt

end

This implementation calculates the same answer as the original definition of member, but the
old version is better. Briefly explain why, noting not just how this version is different but
also why this difference is important.
Answer: The checks to see if the tree is a bst is both redundant (as the tree can be assumed to
be a BST because that is the module invariant) and computationally very expensive (as the
check is done with each recursive call, the subtrees will be rechecked multiple times).
Grading Scheme: 3 points: observes that (a) this version does not need to check the BST
invariant because it is preserved by the module interface and (b) this check is really expensive
because it is done at each recursive call. 2 points: answers that make sense but don’t mention
both points (i.e. notes redundancy but don’t observe how expensive the check is). 1 point:
some attempt at an answer that doesn’t say anything wrong. 0 points: blank, or makes a
claim that is incorrect: i.e. says that this version is better, or says that this version calculates
the wrong answer.

6



For the last four problems you will extend the SET interface (shown on page 11) with the following
new function:

(* Return a new set containing all elements of the

* given set that are strictly less than the specified

* element. *)

val prefix : ’a -> ’a set -> ’a set

For example, the prefix of the set {4, 1, 3, 2} with respect to the element 3 is the set {1, 2}. Note
that the specified element may or may not be contained within the set.

4. Test-driven development (6 points)

Using the set interface above, write two test cases that specify the behavior of prefix. You may
assume that a module implementing this interface has been opened and all of the functions from
that module are in scope. Make sure that you provide informative names for the tests too!

For example, one test case that you might write is:
let test () : bool =

equals (prefix 3 empty) empty
;; run_test "prefix of an empty set is empty" test

Write your two tests below:
let test () : bool =
equals (prefix 1 (set_of_list [1;2])) empty

;; run_test "all elements removed" test
let test () : bool =
equals (prefix 3 (set_of_list [1;2])) (set_of_list [1;2])

;; run_test "all elements retained" test

Grading Scheme: 2 points - correct test, 1 point - interesting test and descriptive string.

Good tests include coding the provided informal test from the problem description, a case where
all elements are bigger, a case where all elements are smaller. The test cases must use equals to
compare sets, not = to be correct. The test case should not assume a particular implementation of
sets, such as lists.

7



5. List recursion and invariants (18 points)

Recall the OLSet implementation of the SET interface from homework 3, which represents sets us-
ing ordered lists that do not contain duplicates. For reference, part of this implementation appears
on page 12.

Implement the prefix function for this module below. Your solution must take advantage of the
representation invariant to avoid extra work, and must return a list that satisfies the representation
invariant for this module. Your solution must be recursive and cannot call any helper functions.
In particular, you cannot call helper functions that you write yourself or a functions from the OLSet
module in your implementation.
let rec prefix (x : ’a) (l : ’a list) : ’a list =
begin match l with
| [] -> []
| h :: t -> if x <= h then [] else h :: prefix x t
end

Grading Scheme: Note that the use of other functions, such as add, was specifically disallowed
by the instructions.

• 2 pattern match l

• 2 case for []

• 2 compare x and h

• 2 correct behavior when x = h (perhaps included in below)

• 4 correct behavior when x < h (deduct 3 points if there is a recursive call to prefix in this
case)

• 6 correct behavior when x > h cons h, recursive call exists, correct args to recursive call

• No deduction for minor syntax errors

8



6. Tree recursion and invariants (18 points)

Recall the BSTSet implementation of the SET interface, which represents sets using Binary Search
Trees. This implementation maintains the BST invariant. For reference, part of this implementa-
tion appears in on page 13.

Implement the prefix function for this module below. Your solution must take advantage of the
representation invariant to avoid extra work, and must return a tree that satisfies the BST invariant.
Your solution must be recursive and cannot call any helper functions. In particular, you can-
not call helper functions that you write yourself or a functions from the BSTSet module in your
implementation.
let rec prefix (x: ’a) (t : ’a tree) : ’a tree =
begin match t with
| Empty -> Empty
| Node (lt,h,rt) ->

if x < h then prefix x lt
else if x > h then Node (lt, h, prefix x rt)
else lt

Grading Scheme:

Note that the correct answer uses the BST invariant in several ways: when the argument x is less
than the value at the node h, the entire right subtree can be pruned entirely, when the argument is
greater, then there is no need to call prefix recursively on the left subtree (all elements are known
to be smaller) and when the argument x is equal then the left tree can just be returned (again as
all elements are known to be smaller).

• 2 pattern match on t and case for Empty

• 2 compare x and h

• 4 correct code when x = h

• 4 correct recursive call when x < h (recursive call exists, correct args to prefix, rt discarded)

• 6 correct case when x > h recursive call exists, correct args to prefix, constructs node with
result

• No deduction for minor syntax errors as long as they are unambiguous

9



7. Higher-order functions (10 points)

Recall the ULSet implementation of the SET interface, which also represents sets using lists. How-
ever, this implementation does not maintain any invariant. For reference, part of this implementa-
tion appears on page 12.

Implement the prefix function for this module below. In this case, your answer cannot be recur-
sive and must use one of the higher-order functions shown on page 11. You may define your
own helper function in this problem, but you may not use any others, such as from the ULSet

module.
let prefix (x : ’a) (l : ’a list) : ’a list =
filter (fun (h : ’a) -> h < x) l

or
let prefix (x : ’a) (l : ’a list) : ’a list =
let helper (h : ’a) : bool = h < x in
filter helper l

or
let helper (x : ’a) (h : ’a) : bool = h < x in
let prefix (x : ’a) (l : ’a list) : ’a list =
filter (helper x) l

Grading Scheme:

• 2 points for picking the right HOF (filter)

• 2 points for defining any helper function (does not need to be an anonymous function, could
be defined inside or outside prefix).

• 2 points for the helper function having the right type

• 2 points for the helper function calculating the correct result

• 2 points for providing the l argument to filter

10



Appendix: Higher-order functions

let rec transform (f: ’a -> ’b) (x: ’a list): ’b list =
begin match x with
| [] -> []
| h :: t -> (f h) :: (transform f t)
end

let rec for_all (pred: ’a -> bool) (l: ’a list): bool =
begin match l with
| [] -> true
| h :: t -> pred h && for_all pred t
end

let rec filter (f: ’a -> bool) (l: ’a list) : ’a list =
begin match l with
| [] -> []
| h :: t -> if f h then h :: filter f t else filter f t
end

Appendix: SET interface
The interface for the set abstract type.

module type SET = sig

type ’a set

val empty : ’a set
val is_empty : ’a set -> bool
val member : ’a -> ’a set -> bool
val add : ’a -> ’a set -> ’a set
val equals : ’a set -> ’a set -> bool
val set_of_list : ’a list -> ’a set

...
end

11



Appendix: unordered-list SET implementation
Sets implemented via lists. This implementation does not maintain any invariants about its representa-
tion. Only part of this implementation is shown.

module ULSet : SET = struct

type ’a set = ’a list

let empty : ’a set = []

let add (x: ’a) (s: ’a list) : ’a list =
x :: s

...
end

Appendix: ordered-list SET implementation
Ordered lists sets. This implementation maintains the invariant that all elements are stored in a list,
without duplicates, in ascending order. Only part of this implementation is shown.

module OLSet : SET = struct

type ’a set = ’a list

let empty : ’a set = []

let rec add (x: ’a) (s: ’a list) : ’a list =
begin match s with
| [] -> [x]
| y :: ys ->

if x = y then s
else if x < y then x :: s
else y :: add x ys

end

...
end

12



Appendix: Binary Search Tree SET implementation
Sets based on Binary Search Trees. This implementation maintains the invariant that all trees satisfy the
BST invariant. Only part of this implementation is shown.

module BSTSet : SET = struct

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

type ’a set = ’a tree

let empty : ’a tree = Empty

let rec member (n:’a) (t: ’a tree) : bool =
begin match t with
| Empty -> false
| Node (lt, x, rt) ->

if x = n then true
else if n < x then member n lt
else member n rt

end

let rec tree_lt (t: ’a tree) (max: ’a) : bool =
begin match t with
| Empty -> true
| Node (lt, v, rt) -> v < max && tree_lt lt max && tree_lt rt max
end

let rec tree_gt (t: ’a tree) (min: ’a) : bool =
begin match t with
| Empty -> true
| Node (lt, v, rt) -> min < v && tree_gt lt min && tree_gt rt min
end

let rec is_bst (t: ’a tree) : bool =
begin match t with
| Empty -> true
| Node (lt, v, rt) -> is_bst lt && is_bst rt && tree_lt lt v && tree_gt rt v
end

...

end

13


