Programming Languages
and Techniques
(C1S120)

Lecture 1
January 13, 2016

Welcome
Introduction to Program Design

Introductions

* |Instructor: Dr. Stephanie Weirich*
— Levine 510
— sweirich@cis.upenn.edu

— http://www.cis.upenn.edu/~sweirich

— Office hours: Mondays 3:30-5 PM or
by appointment, except:
« TODAY (1/13) at 3:30-5
* Tuesday (1/19) at 3:30-5

e Course Administrator: Laura Fox
— Levine 308
— Iffox@cis.upenn.edu

*Pronounced phonetically as: “whyrick”. 1 won’t get upset if you mispronounce my name (really!). | will answer to anything
CIS120 remotely close, or, you can just call me Stephanie. Whatever you feel comfortable with.

Introductions

* Instructor: Dr. Steve Zdancewic*
— Levine Hall 511
— stevez@cis.upenn.edu
— http://www.cis.upenn.edu/~stevez/

— Office hours: |
Mondays 3:30 — 5:00pm (may change!)
or by appointment

e Course Administrator: Laura Fox

— Levine 308
— Iffox@cis.upenn.edu

*Pronounced phonetically as: “zuh dans wick”. | won’t get upset if you mispronounce my name (really!). | will answer to
anything remotely close, or, you can call me Steve, just Professor, or Professor Z. Whatever you feel comfortable with.

CIS120/Spring 2012 3

Teaching Assistant Staff*

Becky Abramowitz
Bethany Davis
Brian Hirsh
Danica Fine
Dylan Mann
Enriqgue Mitchell
Graham Mosley
Helena Chen
Jacob Hultman
Jenny Chen
Jorge Liang
Joyce Lee

Julia Olsen

Kaylin Raby

Liam Gallagher
Matt Chiaravalloti
Matt Howard
Max McCarthy
Pia Kochar

Sahil Ahuja
Samantha Chung
Sierra Yit

Thomas Delacour
Tony Mei

Vivek Raj

Zane Stiles

*AKA: CIS 120 spiritguides, student champions, and all-around defenders of the universe.

"

« Head TAs

What is CIS 1207

* CIS120is a coursein program design

 Practical skills:

ability to write larger (~1000 lines)
programs

increased independence
("working without a recipe")

test-driven development, principled
debugging

 Conceptual foundations:

common data structures and algorithms
several different programming idioms

focus on modularity and
compositionality

derived from first principles throughout

e |t willbe fun!

CIS120

reburn g2 "™ elementsbeginneed

i a reference operations ynit
implement;s library e programming

== FUNCGION \iow

ASM Gime many Displaceable size SbaCK eise
sbate used s
double

sbabic see
void called

eue
I |S bqs!;:lrlng e
add"’i?ea lues W .=

Pecsocamicode widgeb

mouse“ 7‘;heap ol fIF‘|dS |oo Node
exceptions I 11, Point
— expressmn u bllc GWO cca
axcaption . & end
case isbener workspace nex

TCIASS
read
figure functions
by sha =2 | PONS element
mvtevalue b st
=Prog ram

resul

first Flgure run OC since prlvabe None

mabtch
jualgrb Iengbh
Seb. Note m field Ilke bree input
extent ml ht QU
Empty d b head write
WT“USUU lfferentip ars | Whobher mebII'IIOdS
|mpemen L1
ganes US@ ORJECH 0000 tgpes

Prerequisites

* We assume you can already write 10 to 100-line
programs in some imperative or OO language

— Java experience is strongly recommended
— CIS110 0or AP CS is typical

— You should be familiar with using a compiler, editing code,
and running programs you have created

e CIS110 s an alternative to this course

— If you have doubts, come talkto me or one of the TAs to
figure out theright course for you

CIS 120 Tools

e OCaml

— Industrial-strength, statically-typed
functional programming language

— Lightweight, approachable setting for aa\
learning about program design

* Java |
— Industrial-strength, statically-typed (

object-oriented language S P,

- u
Many tools/libraries/resources available 3

* Eclipse

. 7 N
— Popular open-source integrated (= eC“pse
development environment (IDE) W

5120 Installation: http://www.seas.upenn.edu/~cis120/current/ocaml_setup.shtml

Why two languages?

Pedagogic progression
Disparity of background
Confidence in learning new tools

Perspective

“IThe OCaml part of the class] was very essential to
getting fundamental ideas of comp sci across. Without the second
language it is easy to fall into routine and syntax lock where you
don't really understand the bigger picture.”

---Anonymous CIS 120 Student

“ITOCaml] made me better understand features of Java that seemed
innate to programming, which were merely abstractions and
assumptions that Java made. It made me a better Java programmer."
--- Anonymous CIS 120 Student

Teaching Philosophy

* Introd uctory computer science
— Start with basic skills of “algorithmic
thinking” (AP/110)

— Develop systematic design and analysis
skills in the context of larger and more
challenging problems (120)

— Practice with industrial-strength tools and
design processes (120, 121, and beyond)

* Role of CIS120 and program design

— Start with foundations of programming
using the rich grammar and precise
semantics of the OCaml language

— Transition (back) to Java after setting up
the context needed to understand why
Java and OO programming are good tools

— Give a taste of the breadth and depth of CS

CIS120

Philosophy

* Teachingintroductory computer
science

— Start with basic skills of “algorithmic
thinking” (AP/110)

— Develop systematic design and analysis
skills in the context of larger and more
challenging problems (120)

— Practice with industrial-strength tools and
design processes (120, 121, and beyond)

* Role of CIS120 and program design

— Start with foundations of programming
using the rich grammar and precise
semantics of the OCaml language

— Transition (back) to Java after setting up
the context needed to understand why
Java and OO programming are good tools

— Give a taste of the breadth and depth of CS
CIS120

Plato Aristotle Al-
Kwarizmi

Administrative Matters

http://www.seas.upenn.edu/~cis120/

Course Components

Lectures (2% of final grade)

— Presentation of ideas and concepts, interactive demos
— Grade based on participation using “clickers”

— Lecture notes & screencasts available on course website.

Recitations / Labs (6% of final grade)
— Practice and discussion in small group setting
— Grade based on participation

_ Warning: Thisis a
Homework (50% of final grade) :
Dract . . challenging and
— Practice, experience with tools

— Exposure to broad ideas of computer science time consuming
— Grade based on automated tests + style (but rewarding)

Exams (42% of final grade)

— Evening exams, pencil and paper

— Do you understand the terminology? Can you reason about
programs? Can you synthesize solutions?

course!

Some of the homework assignments...

000 X! Caml graphics
lots
and lots Apes
of time | @
Greater Apes Lesser Apes \N\/\/? e
5>
Ceye &

EXTRA DINOSAURS = EXTRA AWESOME

siamang
chimpanzee

;pileaté‘d gibbon

CO m p uti ng W ith D NA IO Pomt| [O Lme‘ |O Elllpse\ |\:| Thick lmesl IO EUPU' IO Paste|

W (O @ (& @ O E E Text buffer:[EXTRA DINDSAURS = EXTRA AUESOME]

Build a GUI Framework

r

|£: | Image Processing : = | (O] |-l

Load new image Save image Undo Quit

RotateCW

Connection -
RotateCCW | MESG java Hello, worid!
\
Mirror vertical CommandParser

Mirror horizontal

«I«

type MESG
param0 java
Simple transform param1 (null)

payload Hello, world!

Client
Contrast

(=

Reduce palette

Blur

Additional classes

Flood

Chat Client/Server

Image Processing

Final project: Design a Game

e 0o Pong

(" Instructions) Restart Level Quit) Objectives Reset)

Planet Game

0 coins 0 coins
1 bomb 3 bombs

8006 Othello
File Edit Help (Pass) White: 2 Black: 5

Orbit Cruiser

0 asteraids Tolfected
‘e

energy -

10 Mg effective mass

(PLAY/RESET) (HELP)

CIS120

Registration / Recitations

e Registration is currently closed
— Add your name to the wait list if you are not registered

— We will be accepting students off the wait list as space is
available (18 students currently...)

— If you are on the wait list, you must keep up with the course
— Sign in after class so | know that you were here

If you need to switch recitations, fill out the online

change request form linked from the course web page
— If you don’t have a recitation, leave the first one blank

e Recitations start next week:

— Make sure you set your laptop up BEFORE the first recitation
— See instructions on course website, ask a TA for help

CHANGE OF LOCATION

e Lab Section 213
— Thurs. 5-6pm

* Moore 207

CCCCCC

Office Hours

 We will try to offer office hours starting soon!
— Look for announcements

 Use them to help get the course infrastructure set up

Clickers

We will use TurningPoint ResponseCards (clickers) for
interactive exercises during lectures.

— wrong answers do not count against your grade

Please buy one at the bookstore (textbook section)
— You can sell it back at the end of the semester

Bring it to lecture every day, beginning Friday
— Participation grades start Friday 1/22/2016

Lecture Policy

* Laptopsclosed... minds open

— Although thisis a computer science y

class, the use of electronic devices —
laptops, cell phones, mobile devices,
iPads, etc.,in lectureis prohibited.

e Why?

— Laptop userstend to surf/chat/e-
mail/game/text/tweet/etc.

— They also distract those around them

— You will get plenty of time in front of
your computers while working on the
course projects :-)

CIS120

Academic Integrity

* Submitted homework must be your individual work

Talk all you want about any level of detail of
the HW, but don’t look at anyone else’s code
and don’t share yours.

* Not OK:

— Copying or otherwise looking at someone else’s code
— Sharing your code in any way (internet, copy-paste, by hand)

* OK/ encouraged:
— Discussions of concepts
— Discussion of debugging strategies
— Verbally sharing experience

CIS120

Rationale

* HW is intendedto be doable individually in the time
allowed.
— With help/clarification from the course staff
* Learning to debug your code is a very important skill!

— Gettingtoo much help hinders this learning process

* There is a bit of a gray area here...
— Hard to delineate OK from not-OK behavior
— We need a simple, clear rule
— Use good judgment

Enforcement

* Course staff will check for copying.

— We use plagiarism detection tools on your code

* Ifyou have significant discussions with a TA or
another studentin the class, acknowledge them in
comments in the submitted code.

Violations will be treated seriously!

* Question? See the course FAQ. If in doubt, ask.

Penn’s code of academic integrity:

http://www.vpul.upenn.edu/osl/acadint.html

CIS120

Academic Integrity

* Not OK
A: | still can’t figure out this problem on HWO06. How do you write
checkboxes?

B: Oh, I’'m done already. Yeah, that problem took forever...
A: Wait, you’re done? Can | look at your code?

B: Sure (shows code)

* OK
A: I still can’t figure out this problem on HW06. How do you write
checkboxes?

B: Oh, I’'m done already. Yeah, that problem took forever....
A: Wait, you’re done? Can | look at your code?

B: Well, what are you stuck on?

A: (points to own code) | don’t get this thing about listeners...
B: Oh! Those things are weird. So think of it this way...

A: Ok, | understand now. Thanks!

 Bottom line: your homework should come from your brain, as well
as your fingers.

CIS120

Fundamental Design Process

Design is the process of translating informal
specifications (“word problems”) into running code.

Understand the problem
What are the relevant concepts and how do they relate?
Formalize the interface

How should the program interact with its environment?
Write test cases

How does the program behave on typical inputs? On unusual

ones? On erroneous ones?

Implementthe required behavior

Often by decomposing the problem into simpler ones and
applying the same recipe to each

CIS120

5. Revise / Refactor/ Edit

A design problem

Imagine that you own a movie theater. The more you
charge, the fewer people can afford tickets. In a recent
experiment you determined a relationship between the
price of a ticket and average attendance. At a price of
S5.00 per ticket, 120 people attend a performance.
Decreasing the price by a dime (5.10) increases
attendance by 15.

However, increased attendance also comes at increased
cost; each attendee costs four cents (50.04). Every
performance also has a base cost of $180. At what price
do you make the highest profit?

Step 1: Understand the problem

 What are the relevant concepts?
— (ticket) price
— attendees
— revenue
— cost
— profit
* What are the relationshipsamong them?

— profit = reve_nue_COSt So profit, revenue, and cost
— revenue = price * attendees also depend on price.

— cost= 5180 + attendees * $0.04
— attendees =some function of the ticket price

* Goal is to determine profit, given the ticket price

Step 2: Formalize the Interface

Idea: we’ll represent money in cents, using integers*

type annotations
comment documents declare the input

the design decision and output types**

\\ =
(* Money 1s represente

let profit (price :

* Floating pointis generally a bad choice for representing money: bankers use different rounding conventions than the IEEE
floating pointstandard, and floating pointarithmetic isn’t as exact as you might like. Try calculating 0.1 + 0.1 + 0.1 sometime
in your favorite programming language...

**OCaml will let you omit these type annotations, butincluding them is mandatory for CIS120. Using type annotations is good
documentation; they also improve the error messages you get from the compiler. When you get a type error message from
the compiler, the firstthing you should do is check that your type annotations are there and that they are what you expect.

CIS120

Step 3: Write test cases

* By looking at the design problem, we can calculate
specific test cases

let profit_500 : int =
let price 500 1in
let attendees = 120 1in
let revenue price * attendees in

let cost 18000 + 4 * attendees 1n
revenue - cost

CIS120

Writing the Test Cases in OCaml

* Record the test cases as assertions in the program:
— the commandrun_test executes a test

a test is just a function that takes no input and returns true if the test succeeds

~
let test (5/? bool =
(profit 500) = profit_500

:: run_test "profit at $5.00" test
\

SN

the string in quotes identifies
the test in printed output
(if it fails)

note the use of double semicolons
before commands
CIS120

Step 4: Implement the Behavior

Profit is easy to define:

let attendees (price : int) = ...

let profit (price : int) =
let revenue = price * (attendees price) 1in
let cost = 18000 + 4 * (attendees price) 1in
revenue - cost

CIS120

Apply the Design Pattern Recursively

attendees™ requires a bit of thought: “stub out”
/unimplemented

&
let attendees (price : int) : int =

failwith “unimplemented”

functions

let test () : bool =
(attendees 500) = 120

;; run test "attendees at $5.00" testw

let test () : bool =
(attendees 490) = 135

;; run _test "attendees at $4.90" teste

generate the tests
*Note that the definition of attendees must go before the definition of profit f th bl
because profit uses the attendees function. rom tne probiem

statement first.
CIS120

Attendees vs. Ticket Price

160 -
140 -
120 -
100 Assume a linear relationship between ticket price
and number of attendees.
80 - Equation for aline: y=mx+Db
m = (diff in attendance / diff in price) =- 15/ 10
o0 b =attendees —m * price =870
40 | [[L)
let attendees (price:int) : int =
20 - -15/10 * price + 870
0

$4.75 $4.80 $4.85 $4.90 $4.95 $5.00 $5.05 $5.10 $5.15

CIS120

CIS120

Run the program!

e One of our test cases for attendees failed...
 Debuggingreveals thatinteger division is tricky*

e Hereis the fixed version:

let attendees (price:int) :int =
(-15 * price) / 10 + 870

*Using integer arithmetic, -15 / 10 evaluates to -1, since -1.5 roundsto-1. Multiplying-15 * price before dividing by 10
increases the precision because roundingerrorsdon’tcreep in.

CIS120

Using Tests

Modern approaches to software engineering advocate
test-driven development, where tests are written
very early in the programming process and used to
drive the rest of the process.

We are big believers in this philosophy, and we’ll be
using it throughout the course.

In the homework template, we may provide one or
more tests for each of the problems. They will often
not be sufficient. You should start each problem by
making up more tests.

How not to Solve this Problem

let profit price =
price * (-15 * price / 10 + 870) -
(18000 + 4 * (-15 * price / 10 + 870))

This program is bad because it
— hides the structure and abstractions of the problem
— duplicates code that could be shared
— doesn’tdocument the interface viatypes and comments

Note that this program still passes all the tests!

CIS120

Summary

To read: Chapter 1 of the lecture notes and course
syllabus. Both available on the course website

To buy: Turning Point clicker. Bring to every class,
and register your ID number on the course website

To do: Try to install OCaml and Eclipse on your
laptops, following the setup instructions on the
course website. TAs will hold office hours this week

to help.
If on the waitlist: sign in at the front of class

CIS120

Who uses OCaml?

(LAY

((
SO
7 T Q
< |JANE STREET
)

LexiFi G 00 gle CiTR! X

S
| MLstate

"’:"’"’Z’wwu\%\\\\\\\\\\\\\\\\\-&S&"’%ﬁ ®
m’yhlife SimCorp

N,
=
o~
/)

—)

d Micr.osoft' '
& 2 Visual F#

////////
CIS120

Course goal

Strive for beautiful code.

e Beautiful code
— is simple
— is easy to understand
— is likely to be correct
— IS easy to maintain
— takes skill to develop

e Beautiful code stems from a good design process

CIS120

Evolving/Refactoring Code

* Forthis simple problem, this desigh methodology
may seem like overkill.
— The real benefits show up in bigger programs
— But even small programs evolve over time...

* Supposethat, based on the problem description, we
decided to define cost in terms of the number of
attendees directly, rather than calling the attendees
from within cost.

— How do our tools and this design methodology help?

Example Refactoring: Change ‘cost’

cost is simplified:

(* atts i1s the number of attendees *)
let cost (atts:1int) : int =
18000 + 4 * atts

... but suppose we forget to change profit, which calls
cost. (As might easily happen in a big program.)

CIS120

Test Case for Profit Fails

m Ocaml Toplevel m OCaml Compiler Output E Console 9_7 Error Log m
profit $5.00 = 41520

Running: profit $5.00

Test failed: profit $5.00

Process ended with exit value 0

We need to fix profit like this:

let profit (price:int) : int =
(revenue price) — (cost (attendees price))

CIS120

Textbook

 Textbook (free download)

— http://www.seas.upenn.edu/~cis120/current/notes/120no
tes.pdf

— written by the course instructors, closely follows the
lectures

— updated throughout the semester

CIS120

