Programming Languages
and Techniques
(C1S120)

Lecture 2
January 15, 2016

Value-Oriented Programming




If you are joining us today...

* Read the course syllabus/lecture notes on the website

— www.cis.upenn.edu/~cis120

e Sign yourself up for Piazza
— piazza.com/upenn/spring2016/cis120

* |nstall OCaml/Eclipse onyourlaptop; ask if you have
guestions

— www.cis.upenn.edu/~cis120/current/ocaml|_setup.shtml

e (Obtain a clicker from the bookstore

* No laptops, tablets, smart phones, etc., during lecture

CIS120




Registration

* Ifyou are not registered, add your name to the
waiting list on the course website

* Need a different recitation?
— If the wantyou wantis open, switch online

— If you need to attend a closed recitation, add your name to
the recitation change request form

— Go to the recitation you want, even if not registered




Announcements

* Please read:

— Chapter 2 of the course notes

— OCaml style guide on the course website

(http://www.seas.upenn.edu/"’cileO/current/programming_style.shtml)

* Homework 1: OCaml Finger Exercises

— Available from course schedule

— Practice using OCaml to write simple programs

— Start with first 4 problems (lists next week!)

— Due: Tuesday, January 26" at 11:59:59pm (midnight)

— Start early!




Homework Policies

Projects will be (mostly) automatically graded
— WEe’ll give you some tests, as part of the assignment
— You’ll write your own tests to supplement these
— Our grading script will apply additional tests
— Your score is based on how many of these you pass
— Most assignments will alsoinclude style points, added later
— Your code must compile to get any credit

You will be given your score (on the automatically graded portion of
the assignment) immediately

Multiple submissions are allowed
— First few submissions: no penalty
— Each submission after the first few will be penalized
— Your final grade is determined by the best raw score

Late Policy

— Submission up to 24 hours late costs 10 points
— Submission 24-48 hours late costs 20 points
— After 48 hours, no submissions allowed




Recitations / Lab Sections

* First recitations start Wednesday and Thursday
— Bring your laptops

— Install tools (OCaml, eclipse) on your laptop before
recitation next week

— www.cis.upenn.edu/~cis120/current/ocaml_setup.shtml

* Goals of first meeting:
— Meet your TAs and classmates
— Debugtool (OCaml, eclipse) installation problems
— Practice with OCaml before your first homework is due

* Office hours times on the web site calendar (under
“Help” tab)

CIS120




Important Dates

e Homework:
— Homework due dates listed on course calendar

— Tuesdays at midnight (mostly): see posted schedule
(one Thursday, right before Spring Break)

* Exams:
— 12% First midterm: Tuesday, February 16th, 6-8PM!
— 12% Second midterm: Tuesday, March 22nd, 6-8PM!
— 18% Final exam: TBA
— Contactinstructor well in advance if you have a conflict

CIS120




Where to ask questions

* Course material
— Piazza Discussion Boards
— TA office hours, on webpage calendar
— Tutoring
— Prof office hours: Mondays from 3:30 to 5:00 PM, or by
appointment (changes will be announced on Piazza)

» HW/Exam Grading: see webpage

* About the CIS majors & Registration

— Mis. Jackie Caliman, Levine 309
CIS Undergraduate coordinator







Clicker Basics

* Beginning today, we’ll use clickers in each lecture
— Grade recording starts next Friday: 1/22/2016
* Any kind of TurningPoint ResponseCard is fine

— Doesn’t have to be the exact model sold in the bookstore

 Use the link on the course website to register your
device ID with the course database

w Responsive Innovations, LLC | |
. PN:RCRF-01 |
Distributed by : Turwing Technologres, LLC |
www.TurningTechnologies.com

' FCC ID : RAWRCRFO1
s C€ €Y
. 5994A-RESCARD

iy

Pd Pond Assembled in S

6-character device ID

CIS120



Test Drive

] ResponseCart
* (Clickers out!

* Press any of the number buttons / - (
— Make sure the display looks like this:
e |Ifitlookslike this...

— ... first check that the channel is set to 41

* If not, try pressing Channel, then 41, then
Channel again to reset the channel

—  ResponseCard R

B ©

— If this doesn’t work come to office hours

CIS120



Have you successfully installed OCaml on your laptop?

1) Yes
2) No



Have you ever used OCaml before?

1) Yes
2) No



In what language do you have the most significant
programming experience?

1) Java or C#

2) C, C++, or Objective-C

3) Python, Ruby, Javascript, or MATLAB
4) Clojure, Scheme, or LISP

5) OCaml, Haskell, or Scala

6) Other



What sort of programming experience do you have?

1) CIS 110

2) High School course (incl. AP CS)
3) Camp or other extra-curricular
4) Self-taught

5) Other



Programmingin OCaml

Read Chapter 2 of the CIS 120 lecture notes,
available from the course web page




What is an OCaml| module?

;3 open Assert <

let attendees (price:int) :int = -

(-15 * price) / 10 + 870

let test () : bool = k///”////////l

attendees 500 = 120

;5 run_test "attendees at 5.00" test\\\

let X : int = attendees 500 <

/

- —\
;5 print_int x

/
;5 print_endline "end of demo"

CIS120

module import

function declarations
(use let keyword)

identifier declarations
(also use let)

commands




What does an OCaml program do?

;5 open Assert

let attendees (price:int) :int =
(-15 * price) / 10 + 870

let test () : bool = é——’____,,————’
attendees 500 = 120

: run_test "attendees at 5.00" test

)

attendees 500

-

let x

_ To know if the test will pass,
we need to know whether this
expression is true or false

__To know what will be printed
we need to know the
value of this expression

;5 print_int x

To know what an OCaml program will do, you need to know

what the value of each expression

CIS120

IS.



Value-Oriented Programming

pure, functional, strongly typed




Course goal

Strive for beautiful code.

* Beautiful code
— is simple
— is easy to understand
— is likely to be correct
— is easy to maintain

— takes skill to develop

CIS120



Value-Oriented Programming

e Java, C, C#, C++, Python, Perl, etc. are tuned for an
imperative programming style
— Programs are full of commands
* “Change x to 5!”

* “Increment z!”
* “Make this point to that!”

e OCaml, on the other hand, promotes a value-
oriented style

— We've seen that there are a few commands...

print endline, run test

... but these are used rarely
— Most of what we write is expressions denoting values




Metaphorically, we might say that
imperative programming is about doing

while

value-oriented programming is about being

Being vs Doing

CIS120



Programming with Values

* Programming in value-oriented (a.k.a. pure or functional)
style can be a bit challenging at first.

S R
* But, in the end, | Ieads to code that is simpler to
understand...

g -
'.~ =
- AR T
N R - - 3
) c - ~
% i o TR RS
v R stk ot N - -
\h..._ . .’;‘.‘- » O VIR L e i~ y
i' :..“ e = » R W S w4
o~ ‘A\A‘ ¥ TR

CIS120




Values and Expressions

Values Operations Expressions

int -1012 + * -/ 3+ *Xx)
float 0.12 3.1415 +. *. -, /. 3.0 * (4.0 *. x)
string “hello” “(CIS120” A “Hello, ” A x

bool true false && || not (not x) |l y

* Every OCaml expression has a type* determined by its
constituent subexpressions.

* Each type correspondsto a set of values.

e Later we'll see how to create our own types and values.

*OCaml is a strongly statically-typed language. Note that there is no automatic conversion fromfloatto int, etc., so you
must use explicit conversion operationslike string_of_intor float_of_int
CIS120




Calculating Expression Values

CIS120

OCaml’s computational model.




Simplification vs. Execution

 We can think of an OCaml expression as just a way of
writing down a value

 We can visualize running an OCaml program as a
sequence of calculation or simplification steps that
eventually lead to this value

* By contrast, a running Java program performs a
sequence of actions or events

e ... avariable named x gets created
e ... then we put the value 3 in x
e ... then we test whether y is greater than z

e ... the answer is true, so we put the value 4 in x

— They modify the implicit, pervasive state of the machine

CIS120




Calculating with Expressions

OCaml programs mostly consist of expressions.

We understand programs by simplifying expressions to
values:

3 — 3 (values compute to themselves)

3+4 =7
2 * (4 +5) = 18
attendees 500 = 120

The notation <exp> = <val> means that the expression
<exp>computes to the value <val>.

Note that the symbol ‘="’ is not OCaml syntax. It’sa convenient
way to talk about the way OCaml programs behave.

CIS120



Step-wise Calculation

* We can understand = in terms of single step
calculations written ‘+—’

* Forexample:

(2+3) * (5-2)

—5 * (5-2) because 2+3 — 5
—5 * 3 because 5-2 — 3
— 15 pecause 5*3 —15

* Every form of expression can be simplified with —

CIS120




Conditional Expressions

1f s = "positive"” then 1 else -1

1f day >= 6 && day <= 7
then "weekend" else "weekday"

 OCaml conditionals are also expressions: they can be
used inside of other expressions:

(if 3 > 0 then 2 else -1) * 100

if x > y then "x is bigger"
else if x < y then "y is bigger”
else "same"

CIS120




Simplifying Conditional Expressions

* A conditional expressionyieldsthe value of eitherits ‘then’-

expression or its ‘else’-expression, depending on whether the
testis ‘true’ or false’.

* For example:

(1f 3 > 0 then 2 else -1) * 100
— (1f true then 2 else -1) * 100
— 2 * 100
— 200

 The type of a conditional expressionisthe (one!) type shared
by both of its branches.

 |tdoesn’t make sense toleave outthe ‘else’ branch in an ‘if’.
(What would be the result if the test was ‘false’?)

CIS120




Top-level Let Declarations

* A let declaration gives a name (a.k.a. an identifier) to
the value denoted by some expression

let p1 : float = 3.14159
let seconds_per_day : int = 60 * 60 * 24

* There is no way of assigning a new value to an
identifier after it is declared — it is immutable.

* The scope of a top-level identifier is the rest of the
file after the declaration.

CIS120




Local Let Expressions

* Let declarationscan appear both at top-level and nested

within other expressions.
The scope of

let attendees = 120 1in after the ‘in’

* Local (nested) let declarations are followed by ‘in’
— e.g. attendees, revenue, and cost

 Top-levellet declarations do not use ‘in’
— e.g. profit_500

* The scope of a local identifieris only the expression after the
linl



Typing Let Expressions

let X =3 + 5 ,1n string_of_int (x * x)
l—'—J B ~—
AN

. int . string > int

. string
* |Insideits scope, a let-bound identifier has the type of

the expression it is bound to.

* The type of the whole local let expression is the type
of the expression after the ‘in’

* Type annotationsin OCaml are written using colon:
let x : int=. ((X+ 3) : 1int) ..

CIS120




